993 resultados para Neutron activation analysis
Resumo:
Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.
Resumo:
Recent phosphorites from the Namibian shelf are characterized by low REE contents, depletion in REE compared to host sediments and sharp deficiency of lanthanum and europium. In Late Quaternary and Pre-Quaternary phosphorites from ocean shelves REE contents and patterns in general are the same as in host sediments. Phosphorites from seamounts are enriched in REE compared to shelf phosphorites and their patterns are close to one of seawater. Behavior of REE in shelf phosphorites is determined by the fact that in early stages of phosphorite formation REE are associated not primarily with phosphate, but with organic matter and terrigenous impurities. Only in the later stages of diagenesis phosphate begins to play a leading role in concentration of REE. In metasomatic phosphorites on seamounts concentration of REE depends on age and depth of these rocks, i.e. it is determined by duration and conditions of contact with sea water.
Resumo:
Atomic-absorption spectrophotometry and instrumental neutron activation analysis were used to determine concentrations of SiO2, Al2O3, FeOt, MgO, CaO, Na2O, K2O, MnO, La, Ce, Sm, Eu, Tb, Yb, Lu, Sc, Co, Cr, Th, Hf, and Ta for 14 basalt samples from the lower portion of Hole 462A in the Nauru Basin. The basalts are similar to normal midocean ridge basalt (MORB) for the elements analyzed, and light rare-earth elements (LREE) are depleted relative to heavy rare-earth elements (HREE). Two samples are extensively altered to smectites and show significant reductions in Al2O3, CaO, MnO, Na2O, REE, Sc, Co, and Hf and gains in MgO and FeOt relative to unaltered samples. The increase in MgO and decrease in CaO indicate that alteration was caused by hydrothermal solutions.
Resumo:
Distribution of rare earth elements (REE) was studied in phosphorites collected from seamounts at depths from about 400 to 3600 m. In general phosphorites are characterized by high REE con¬tent, by a strong negative Ce anomaly, by a slight positive Gd anomaly, and by slight enrichment in heavy REE, which is also characteristic of seawater, where, to certain extent, composition of REE depends on depth. Comparison of REE composition in phosphorites and in seawater from the Northwest Pacific by means of Q-mode factor analysis revealed that REE have been transported into the phosphorites from various water depths following submergence of the seamounts. This corresponds to paleotectonic reconstructions, but is only partially consistent with age determinations of phosphorites.
Resumo:
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions. It is apparent that few of the recovered basalts have the geochemical characteristics of typical "depleted" midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge. Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb, 87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in "MORB". The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an "enriched" and a "depleted" source, but rather a range of sources heterogeneous on different scales for different elements - to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.
Resumo:
Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.
Resumo:
The major element geochemistry of basalts recovered from Leg 83, Hole 504B, shows the typical features of midocean ridge basalts (MORB). The range of variation in their composition, together with the behavior of compatible trace elements (Co, Ni, Cr), indicate the well-known relative abundance of minerals that crystallize from these basaltic liquids: plagioclase, olivine, pyroxene, and spinel in decreasing abundance. The hygromagmaphile (or LILE or incompatible) elements are extremely depleted in light rare earths. Nevertheless, some units show flat and enriched REE patterns. These patterns, together with the values of the La/Ta ratio, are interpreted in terms of local mantle heterogeneity.