509 resultados para Neurones miroirs
Resumo:
RESUME LARGE PUBLIC Le système nerveux central est principalement composé de deux types de cellules :les neurones et les cellules gliales. Ces dernières, bien que l'emportant en nombre sur les neurones, ont longtemps été considérées comme des cellules sans intérêts par les neuroscientifiques. Hors, les connaissances modernes à leurs sujets indiquent qu'elles participent à la plupart des tâches physiologiques du cerveau. Plus particulièrement, elles prennent part aux processus énergétiques cérébraux. Ceux-ci, en plus d'être vitaux, sont particulièrement intrigants puisque le cerveau représente seulement 2 % de la masse corporelle mais consomme environ 25 % du glucose (substrat énergétique) corporel. Les astrocytes, un type de cellules gliales, jouent un rôle primordial dans cette formidable utilisation de glucose par le cerveau. En effet, l'activité neuronale (transmission de l'influx nerveux) est accompagnée d'une augmentation de la capture de glucose, issu de la circulation sanguine, par les astrocytes. Ce phénomène est appelé le «couplage neurométabolique » entre neurones et astrocytes. L'ion sodium fait partie des mécanismes cellulaires entrant en fonction lors de ces processus. Ainsi, dans le cadre de cette thèse, les aspects dynamiques de la régulation du sodium astrocytaire et leurs implications dans le couplage neurométabolique ont été étudiés par des techniques d'imagerie cellulaires. Ces études ont démontré que les mitochondries, machineries cellulaires convertissant l'énergie contenue dans le glucose, participent à la régulation du sodium astrocytaire. De plus, ce travail de thèse a permis de découvrir que les astrocytes sont capables de se transmettre, sous forme de vagues de sodium se propageant de cellules en cellules, un message donnant l'ordre d'accroître leur consommation d'énergie. Cette voie de signalisation leur permettrait de fournir de l'énergie aux neurones suite à leur activation. RESUME Le glutamate libéré dans la fente synaptique pendant l'activité neuronale, est éliminé par les astrocytes environnants. Le glutamate est co-transporté avec des ions sodiques, induisant une augmentation intracellulaire de sodium (Na+i) dans les astrocytes. Cette élévation de Na+i déclenche une cascade de mécanismes moléculaires qui aboutissent à la production de substrats énergétiques pouvant être utilisés par les neurones. Durant cette thèse, la mesure simultanée du sodium mitochondrial (Na+mit) et cytosolique par des techniques d'imagerie utilisant des sondes fluorescentes spécifiques, a indiqué que les variations de Na+i induites par le transport du glutamate sont transmises aux mitochondries. De plus, les voies d'entrée et de sortie du sodium mitochondrial ont été identifiées. L'échangeur de Na+ et de Ca2+ mitochondrial semble jouer un rôle primordial dans l'influx de Na+mit, alors que l'efflux de Na+mit est pris en charge par l'échangeur de Na+ et de H+ mitochondrial. L'étude du Na+mit a nécessité l'utilisation d'un système de photoactivation. Les sources de lumière ultraviolette (UV) classiques utilisées à cet effet (lasers, lampes à flash) ayant plusieurs désavantages, une alternative efficace et peu coûteuse a été développée. Il s'agit d'un système compact utilisant une diode électroluminescente (LED) à haute puissance et de longueur d'onde de 365nm. En plus de leurs rôles dans le couplage neurométabolique, les astrocytes participent à la signalisation multicellulaire en transmettant des vagues intercellulaires de calcium. Ce travail de thèse démontre également que des vagues intercellulaires de sodium peuvent être évoquées en parallèle à ces vagues calciques. Le glutamate, suite à sa libération par un mécanisme dépendent du calcium, est réabsorbé par les transporteurs au glutamate. Ce mécanisme a pour conséquence la génération de vagues sodiques se propageant de cellules en cellules. De plus, ces vagues sodiques sont corrélées spatialement avec une consommation accrue de glucose par les astrocytes. En conclusion, ce travail de thèse a permis de montrer que le signal sodique astrocytaire, déclenché en réponse au glutamate, se propage à la fois de façon intracellulaire aux mitochondries et de façon intercellulaire. Ces résultats suggèrent que les astrocytes fonctionnent comme un réseau de cellules nécessaire au couplage énergétique concerté entre neurones et astrocytes et que le sodium est un élément clé dans les mécanismes de signalisations cellulaires sous-jacents. SUMMARY Glutamate, released in the synaptic cleft during neuronal activity, is removed by surrounding astrocytes. Glutamate is taken-up with Na+ ions by specific transporters, inducing an intracellular Na+ (Na+i) elevation in astrocytes which triggers a cascade of molecular mechanisms that provides metabolic substrates to neurons. Thus, astrocytic Na+i homeostasis represents a key component of the so-called neurometabolic coupling. In this context, the first part of this thesis work was aimed at investigating whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Simultaneous monitoring of both mitochondrial Na+ (Na+mit) and cytosolic Na+ changes with fluorescent dyes revealed that glutamate-evoked cytosolic Na+ elevations are indeed transmitted to mitochondria. The mitochondrial Na+/Ca2+ exchangers have a prominent role in the regulation of Na+mit influx pathway, and Na+mit extrusion appears to be mediated by Na+/H+ exchangers. To demonstrate the implication of Na+/Ca2+ exchangers, this study has required the technical development of an UV-flash photolysis system. Because light sources for flash photolysis have to be powerful and in the near UV range, the use of UV lasers or flash lamps is usually required. As an alternative to these UV sources that have several drawbaks, we developped a compact, efficient and lowcost flash photolysis system which employs a high power 365nm light emitting diode. In addition to their role in neurometabolic coupling, astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. The third part of this thesis show that intercellular Na+ waves can be evoked in parallel to Ca2+ waves. Glutamate released by a Ca2+ wave-dependent mechanism is taken up by glutamate transporters, resulting in a regenerative propagation of cytosolic Na+ increases. Na+ waves in turn lead to a spatially correlated increase in glucose uptake. In conclusion, the present thesis demonstrates that glutamate-induced Na+ changes occurring in the cytosol of astrocytes propagate to both the mitochondrial matrix and the astrocytic network. These results furthermore support the view that astrocytic Na+ is a signal coupled to the brain energy metabolism.
Resumo:
Abstract: Myotonic dystrophy (DM1), also known as Steinert disease, is an inherited autosomal dominant disease. It is characterized by myotonia, muscular weakness and atrophy, but DM1 may have manifestations in other organs such as eyes, heart, gonads, gastrointestinal and respiratory tracts, as well as brain. In 1992, it was demonstrated that this complex disease results from the expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the inherited expansion is critically linked to the severity of the disease and the age of onset. Although several electrophysiological and histological studies have been carried out to verify the possible involvement of peripheral nerve abnormality with DM1, the results have not been univocal. Therefore, at present the possible association between peripheral neuropatliy and DM1 remains debated. Recently, transgenic mice have been generated, that carry the human genomic DM1 region with 300 CTG repeats, and display the human DMl phenotype. The generation of these DM1 transgenic mice provides a useful tool to investigate the type and incidence of structural abnormalities in the peripheral nervous system associated with DM1 disease. By using the DM1 transgenic mice, we investigated the presence/absence of the three major peripheral neuropathies: axonal degeneration, axonal demyelination and neuronopathy. The morphological and morphometric analysis of sciatic, sural and phrenic nerves demonstrated the absence of axonal degeneration or demyelination. The morphometric analysis also ruled out any loss in the numbers of sensory or motor neurons in lumbar dorsal root ganglia and lumbar spinal cord enlargement respectively. Moreover, the éxamination of serial hind limb muscle sections from DMl mice showed a normal intramuscular axonal arborization as well as the absence of changes in the number and structure of endplates. Finally, the electrophysiological tests performed in DM1 transgenic mice showed that the compound muscle axon potentials (CMAPs) elicited in the hind limb digits in response to a stimulation of the sciatic nerve with anear-nerve electrode were similar to thosé obtained in wild type mice. On the basis of all our results, we hypothesized that 300 CTG repeats are not sufficient to induce disorder in the peripheral nervous system of this DM1 transgenic mouse model. Résumé La dystrophie myotonique (DM1), connue aussi sous le nom de maladie de Steinert, est une maladie héréditaire autosornale dominante. Elle est caractérisée par une myotonie, une faiblesse et une atrophie musculaires, mais peut aussi se manifester dans d'autres organes tels que les yeux, les voies digestive et respiratoire, ou le cerveau. En 1992, il a été montré que cette maladie complexe résultait de l'expansion d'une répétition de CTG dans une partie non traduite en 3' du gène codant pour la protéine kinase DM (DMPK), sur le chromosome 19. La taille de l'expansion héritée est étroitement liée à la sévérité et l'âge d'apparition de DM1. Bien que plusieurs études électrophysiologiques et histologiques aient été menées, pour juger d'une implication possible d'anomalies au niveau du système nerveux périphérique dans la DM1, les résultats n'ont jusqu'ici pas été univoques. Aujourd'hui, la question d'une neuropathie associée avec la DM1 reste donc controversée. Des souris transgéniques ont été élaborées, qui portent la séquence DM1 du génome humain avec 300 répétitions CTG et expriment le phénotype des patients DM1: Ces souris transgéniques DMl procurent un outil précieux pour l'étude du type et de l'incidence d'éventuelles anomalies du système nerveux périphérique dans la DM1. En utilisant ces souris transgéniques DM1, nous avons étudié la présence ou l'absence des trois principaux types de neuropathies périphériques: la dégénération axonale, la démyélinisation axonale et la neuronopathie. Les études morphologiques et morphométrique des nerfs sciatiques, suraux et phréniques ont montré l'absence de dégénération axonale ou de démyélinisation. L'analyse du nombre de cellules neuronales n'a pas dévoilé de diminution des nombres de neurones sensitifs dans les ganglions des racines dorsales lombaires ou de neurones moteurs dans la moëlle épinière lombaire des souris transgéniques DMl. De plus, l'examen de coupes sériées de muscle des membres postérieurs de souris DM1 a montré une arborisation axonale intramusculaire normale, de même que l'absence d'irrégularité dans le nombre ou la structure des plaques motrices. Enfin, les tests électrophysiologiques effectués sur les souris DMl ont montré que les potentiels d'action de la composante musculaire (CMAPs) évoqués dans les doigts des membres postérieurs, en réponse à une stimulation du nerf sciatique à l'aide d'une électrode paranerveuse, étaient identiques à ceux observées chez les souris sauvages. Sur la base de l'ensemble de ces résultats, nous avons émis l'hypothèse que 300 répétitions CTG ne sont pas suffisantes pour induire d'altérations dans le système nerveux périphérique du modèle de souris transgéniques DM 1.
Resumo:
In the cerebrospinal fluid of 26 drug-naive schizophrenics (DSM-III- R), we observed that the level of glutathione ([GSH]) and of its metabolite γ-Glu-Gln was decreased by 27% and 16% respectively. Using a new in-vivo method based on magnetic resonance spec- troscopy, [GSH] was measured in the medial prefrontal cortex of 18 schizophrenics and found to be 52 % lower than in controls (n = 20). This is consistent with the recently observed decreased mRNA levels in fibroblasts of patients (n=32) of the two GSH synthesizing en- zymes (glutathione synthetase (GSS), and glutamate-cysteine ligase M (GCLM) the modulatory subunit of glutamate-cysteine ligase). Moreover, the level of GCLM expression in fibroblasts correlates neg- atively with the psychopathology (positive, general and some nega- tive symptoms). Thus, the observed difference in gene expression is not only the cause of low brain [GSH], but is also related to the sever- ity of symptoms, suggesting that fibroblasts are adequate surrogate for brain tissue. A hypothesis was proposed, based on a central role of GSH in the pathophysiology of schizophrenia. GSH is an important endogenous redox regulator and neuroactive substance. GSH is pro- tecting cells from damage by reactive oxygen species generated, among others, by the metabolism of dopamine. A GSH deficit-in- duced oxidative stress would lead to lipid peroxidation and micro-le- sions in the surrounding of catecholamine terminals, affecting the synaptic contacts on dendritic spines of cortical neurones, where ex- citatory glutamatergic terminals converge with dopaminergic ones. This would lead to spines degeneration and abnormal nervous con- nections or structural disconnectivity, possibly responsible for posi- tive, perceptive and cognitive symptoms of schizophrenia. In addi- tion, a GSH deficit could also lead to a functional disconnectivity by depressing NMDA neurotransmission, in analogy to phencyclidine effects. Present experimental biochemical, cell biological and behav- ioral data are consistent with the proposed mechanism: decreasing pharmacologically [GSH] in experimental models, with or without blocking DA uptake (GBR12909), induces morphological and behav- ioral changes similar to those observed in patients. Dendritic spines: (a) In neuronal cultures, low [GSH] and DA induce decreased density of neural processes; (b) In developing rats (p5-p16), [GSH] deficit and GBR induce a decrease in normal spines in prefrontal pyramids and in GABA-parvalbumine but not of -calretinine immunoreactivity in anterior cingulate. NMDA-dependant synaptic plasticity: GSH deple- I/13 tion in hippocampal slices impairs long-term potentiation. Develop- ing rats with low [GSH] and GBR have deficit in olfactory integration and in object recognition which appears earlier in males than fe- males, in analogy to the delay of the psychosis onset between man and woman. In summary, a deficit of GSH and/or GSH-related enzymes during early development could constitute a major vulnerability fac- tor in schizophrenia.
Resumo:
Anàlisi de les interaccions, a nivell neuronal, que tenen lloc durant el desenvolupament embrionari entre el receptor Unc5B (receptor present a la membrana) i les proteïnes Netrin-1 i FLRT3 (fibronectin and leucine-rich transmembrane proteins). La interacció entre aquest receptor i Netrin-1 ha estat profundament estudiada fins al moment, de manera que es coneix que aquesta promou una repulsió en la guia d’axons durant el desenvolupament embrionari. A més, la interacció està implicada en la senyalització per a diferents processos com l’angiogènesi i la supervivència cel·lular. Per altra banda, la interacció entre neurones Unc5B positives i FLRT3, promou un retard en la migració de les neurones. Diversos estudis demostren que aquest retard en la migració està relacionat amb certes patologies mentals.
Resumo:
Résumé large public: Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique précoce de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant les mécanismes cellulaires de la pathogenèse restent à identifier. Le métabolisme cérébral a ceci de remarquable qu'il repose sur la coopération entre deux types cellulaires, ainsi les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Ces fonctions astrocytaires sont essentielles au bon fonctionnement et à la survie neuronale; par conséquent, une altération de ces fonctions astrocytaires pourrait participer au développement de certaines maladies cérébrales. Le but de ce travail est, dans un premier temps, d'explorer les effets de médiateurs de la neuroinflammation (les cytokines pro-inflammatoires) et du peptide beta-amyloïde sur le métabolisme des astrocytes corticaux, en se focalisant sur les éléments en lien avec le métabolisme énergétique et le stress oxydatif. Puis, dans un second temps, de caractériser les conséquences pour les neurones des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus ici montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme énergétique du glucose, en diminuant l'apport potentiel de substrats énergétiques aux neurones. En plus de son effet propre, le peptide beta-amyloïde potentialise les effets des cytokines pro-inflammatoires. Or, dans le cerveau de patients atteints de la MA, les astrocytes sont exposés simultanément à ces deux types de substances. Les deux types de substances ont un effet ambivalent en termes de stress oxydatif. Ils induisent à la fois une augmentation de la libération de glutathion (potentiellement protecteur pour les neurones voisins) et la production d'espèces réactives de l'oxygène (potentiellement toxiques). Etant donné l'importance de la coopération entre astrocytes et neurones, ces modulations du métabolisme astrocytaire pourraient donc avoir un retentissement majeur sur les cellules environnantes, et en particulier sur la fonction et la survie neuronale. Résumé Les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, tels que le lactate, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique, précoce, de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant, les mécanismes cellulaires de la pathogenèse restent à identifier. Le but de ce travail est d'explorer les effets des cytokines pro-inflammatoires (Il-1 ß et TNFα) et du beta-amyloïde (Aß) sur le métabolisme du glucose des astrocytes corticaux en culture primaire ainsi que de caractériser les conséquences, pour la viabilité des neurones voisins, des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme glycolytique astrocytaire. Après 48 heures, le traitement avec TNFα et Il-lß cause une augmentation de la capture de glucose et de son métabolisme dans la voie des pentoses phosphates et dans le cycle de Krebs. A l'inverse, il cause une diminution de la libération de lactate et des stocks cellulaires de glycogène. En combinaison avec les cytokines tel qu'in vivo dans les cerveaux de patients atteints de MA, le peptide betaamyloïde potentialise les effets décrits ci-dessus. Isolément, le Aß cause une augmentation coordonnée de la capture de glucose et de toutes les voies de son métabolisme (libération de lactate, glycogenèse, voie des pentoses phosphate et cycle de Krebs). Les traitements altèrent peu les taux de glutathion intracellulaires, par contre ils augmentent massivement la libération de glutathion dans le milieu extracellulaire. A l'inverse, les deux types de traitements augmentent la production intracellulaire d'espèces réactives de l'oxygène (ROS). De plus, les cytokines pro-inflammatoires en combinaison augmentent massivement la production des ROS dans l'espace extracellulaire. Afin de caractériser l'impact de ces altérations métaboliques sur la viabilité des neurones environnants, un modèle de co-culture et des milieux conditionnés astrocytaires ont été utilisés. Les résultats montrent qu'en l'absence d'une source exogène d'antioxydants, la présence d'astrocytes favorise la viabilité neuronale ainsi que leur défense contre le stress oxydatif. Cette propriété n'est cependant pas modulée par les différents traitements. D'autre part, la présence d'astrocytes, et non de milieu conditionné, protège les neurones contre l'excitotoxicité due au glutamate. Les astrocytes prétraités (aussi bien avec le beta-amyloïde qu'avec les cytokines pro-inflammatoires) perdent cette propriété. Cet élément suggère que la perturbation du métabolisme astrocytaire causé par les cytokines pro-inflammatoires ou le beta-amyloïde pourrait participer à l'atteinte de la viabilité neuronale associée à certaines pathologies neurodégénératives.
Resumo:
Chez les mammifères, les phéromones sont des molécules clés dans la régulation des comportements sociaux au sein d'une espèce. Chez la souris, la détection de ces molécules se fait dans l'organe voméronasal (VNO] et implique le canal TRPC2 afin de dépolariser les neurones. Des différences de comportement entre des souris Trpc2-/- et des souris sans VNO suggèrent l'implication d'une autre protéine effectrice dans la voie de signalisation des phéromones. L'hypothèse étant que cette protéine formerait un canal hétéromérique avec TRPC2. CNGA4 est une protéine sans fonction connue dans le VNO des rongeurs. Elle appartient à la famille des protéines CNG qui joue un rôle important dans différentes voies de signalisation comme la vision ou l'olfaction. Etant donné sa présence dans le VNO, son rôle inconnu dans cet organe et son rôle important dans de nombreuses voies de signalisation, nous avons décidé d'étudier CNGA4 afin de connaître sa localisation, ses propriétés ou encore sa structure. Nous avons découvert que CNGA4 est exprimée dans les axons, les neurones immatures ainsi que sur les microvillosités des neurones de VNO. A l'aide de souris portant une version non fonctionnelle de CNGA4, nous avons pu montrer que cette protéine joue un rôle majeur dans la voie de signalisation des phéromones. Ainsi, les neurones du VNO portant une version non fonctionnelle de CNGA4 répondent moins fréquemment aux phéromones et par conséquent les phéromones activent également moins de neurones dans le bulbe olfactif accessoire, premier relais du VNO avec le cortex. Cette détection défaillante se traduit par une absence d'agressivité des souris mutantes ainsi que par une incapacité de ces souris à discriminer le sexe de leur conspécifique. Etant donné les propriétés similaires de CNGA4 et de TRPC2, nous avons supposé que les deux protéines pourraient interagir. Cette hypothèse a été confortée par l'observation que CNGA4 n'est plus exprimée dans les microvillosités du VNO des souris Trpc2-/-. A l'aide d'expériences d'expression hétérologue, nous avons pu observer que les deux protéines interagissent et forment un canal activé par un analogue du diacylglycérol suggérant que ce canal est fonctionnel. Ces résultats indiquent que CNGA4 formerait un canal hétéromérique avec TRPC2 et aurait dans ce canal une fonction modulatrice. Des expériences complémentaires sont nécessaires afin de connaître le rôle de chacune de ces protéines dans la voie de signalisation des phéromones. Sensing pheromones: a role for the CNGA4 and TRPC2 proteins Mammalian pheromones are key chemical signals in the regulation of intraspecies social behaviors. Detection of these pheromones, which takes place in sensory neurons of the vomeronasal organ (VNO), implies the activation of the transient receptor potential canonical channel 2 (TRPC2) as the final effector. Interestingly, discrepancies between Trpc2 /- mice and mice lacking a VNO suggest the implication of another protein in the pheromone signaling pathway. This protein could either form a heteromeric channel with TRPC2 or a separate homomeric ion channel. The cyclic nucleotide-gated channel subunit CNGA4 is also expressed in the rodent VNO but its role and properties in this organ remain unknown. CNGA4 belongs to the CNG channel family which is playing an important role in different sensory pathways such as in light and odorant detection. We thus decided to study the role of the CNGA4 protein in the mouse VNO. We found CNGA4 to be expressed in axons, dendrites and in the sensory microvilli. Using mice bearing a non-functional form of CNGA4 we further demonstrated the importance of the CNGA4 protein for the pheromone signaling pathway as neurons from mutant mice were responding less frequently to chemosensory cues. As a result, mutant mice displayed a non-aggressive behavior and an impaired sexual discrimination ability. Based on the CNGA4 localization and its role in the pheromone signaling pathway we hypothesized a possible interaction between CNGA4 and TRPC2 forming a heteromeric channel. First evidences for this interaction came from the absence of CNGA4 expression in the sensory microvilli of Trpc2-/- mice. Second, using transfected HEK cells as an expression system we could observe that CNGA4 and TRPC2 interact and translocate to the plasma membrane. Perfusion of a DAG analogue on co-transfected HEK cells resulted in a strong calcium entry suggesting that the two proteins form a functional channel. These results might suggest a modulatory role for CNGA4 in a heteromeric TRPC2+CNGA4 ion channel. Further experiments will give more insights on the combined role of these transduction ion channels in pheromone detection.
Resumo:
AbstractEstablishment of a functional nervous system occurs through an orchestrated multistep process during embryogenesis. As dendrites are the primary sites of synaptic connections, development of dendritic arborization is essential for the formation of functional neural circuits. Maturation of dendritic arbor occurs through dynamic processes that are regulated by intrinsic genetic factors and external signals, such as environmental stimuli, neuronal activity and growth factors. Among the latter, the neurotrophic factor BDNF is a key regulator of dendritic growth. However, the mechanisms by which BDNF controls dendritic development remain elusive.In this study, we first showed that activation of the MAPK signaling pathway and phosphorylation of the transcription factor CREB are required to mediate the effects of BDNF on dendritic development of cortical neurons. However, phosphorylation of CREB alone is not sufficient to induce dendritic growth in response to BDNF. Thus, by using a mutant form of CREB unable to bind its coactivator CRTC1, we demonstrated that BDNF-induced dendritic elaboration requires the functional interaction between CREB and CRTC1. Consistent with these observations, inhibition of CRTC1 expression by shRNA-mediated knockdown was found to suppress the effects of BDNF on dendritic length and branching of cortical neurons.The nuclear translocation of CRTC1, a step necessary for the interaction between CREB and CRTC1, was shown to result from the activation of NMD A receptors by glutamate, leading to the dephosphorylation of CRTC1 by the protein phosphatase calcineurin. In line with these findings, prevention of CRTC1 nuclear translocation in the absence of glutamate, or by inhibiting NMDA receptors or calcineurin suppressed the promotion of dendritic growth by BDNF.Increasing evidence supports a role for the growth factor HGF in the regulation of dendritic morphology during brain development. Despite these observations, little is known about the cellular mechanisms underlying the effects of HGF on dendritic elaboration of cortical neurons. The second part of this study was aimed at elucidating the cellular processes that mediate the effects of HGF on dendritic differentiation. We found that HGF increases cortical dendritic growth through mechanisms that involve MAPK-dependent phosphorylation of CREB, and interaction of CREB with its coactivator CRTC1. These data indicate that the mechanisms underlying the promotion of dendritic growth by HGF are similar to those that mediate the effects of BDNF, suggesting that the role of CREB and CRTC1 in the regulation of dendritic development may not be limited to HGF and BDNF, but may extend to other neurotrophic factors that control dendritic differentiation.Together, these results identify a previously unrecognized mechanism by which CREB and its coactivator CRTC1 mediate the effects of BDNF and HGF on dendritic growth of cortical neurons. Moreover, these data highlight the important role of the cooperation between BDNF/HGF and glutamate that converges on CREB to stimulate the expression of genes that contribute to the development of dendritic arborization.RésuméL'établissement d'un système nerveux fonctionnel s'accomplit grâce à des mécanismes précis, orchestrés en plusieurs étapes au cours de l'embryogenèse. Les dendrites étant les principaux sites de connexions synaptiques, le développement de l'arborisation dendritique est essentiel à la formation de circuits neuronaux fonctionnels. La maturation de l'arbre dendritique s'effectue grâce à des processus dynamiques qui sont régulés par des facteurs génétiques intrinsèques ainsi que par des facteurs externes tels que les stimuli environnementaux, l'activité neuronale ou les facteurs de croissance. Parmi ces derniers, le facteur neurotrophique BDNF est - connu pour être un régulateur clé de la croissance dendritique. Cependant, les mécanismes par lesquels BDNF contrôle le développement dendritique demeurent mal connus.Au cours de cette étude, nous avons montré dans un premier temps que l'activation de la voie de signalisation de la MAPK et la phosphorylation du facteur de transcription CREB sont nécessaires aux effets du BDNF sur le développement dendritique des neurones corticaux. Toutefois, la phosphorylation de CREB en tant que telle n'est pas sûffisante pour permettre la pousse des dendrites en réponse au BDNF. Ainsi, en utilisant une forme mutée de CREB incapable de se lier à son coactivateur CRTC1, nous avons démontré que l'élaboration des dendrites induite par le BDNF nécessite également une interaction fonctionnelle entre CREB et CRTC1. Ces résultats ont été confirmés par d'autres expériences qui ont montré que l'inhibition de l'expression de CRTC1 par l'intermédiaire de shRNA supprime les effets du BDNF sur la longueur et le branchement dendritique des neurones corticaux.Les résultats obtenus au cours de ce travail montrent également que la translocation nucléaire de CRTC1, qui est une étape nécessaire à l'interaction entre CREB et CRTC1, résulte de l'activation des récepteurs NMDA par le glutamate, entraînant la déphosphorylation de CRTC1 par la protéine phosphatase calcineurine. De plus, le blocage de la translocation nucléaire de CRTC1 en absence de glutamate, ou suite à l'inhibition des récepteurs NMDA ou de la calcineurine, supprime complètement la pousse des dendrites induite par le BDNF.De nombreuses d'évidences indiquent que le facteur de croissance HGF joue également un rôle important dans la régulation de la morphologie dendritique au cours du développement cérébral. Malgré ces observations, peu d'éléments sont connus quant aux mécanismes cellulaires qui sous-tendent les effets du HGF sur la croissance dendritique des neurones corticaux. Le but de la seconde partie de cette étude a eu pour but d'élucider les processus cellulaires responsables des effets du HGF sur la différenciation dendritique des neurones corticaux. Au cours de ces expériences, nous avons pu mettre en évidence que le HGF induit la pousse dendritique par des mécanismes qui impliquent la phosphorylation de CREB par la MAPK, et l'interaction de CREB avec son coactivateur CRTC1. Ces données indiquent que les mécanismes impliqués dans la stimulation de la croissance dendritique par le HGF sont similaires à ceux régulant les effets du BDNF, ce qui suggère que le rôle de CREB et de CRTC1 dans la régulation du développement dendritique n'est vraisemblablement pas limité aux effets du HGF ou du BDNF, mais pourrait s'étendre à d'autres facteurs neurotrophiques qui contrôlent la différenciation dendritique.En conclusion, ces résultats ont permis l'identification d'un nouveau mécanisme par lequel CREB et son coactivateur CRTC1 transmettent les effets du BDNF et du HGF sur la croissance dendritique de neurones corticaux. Ces observations mettent également en évidence le rôle important joué par la coopération entre BDNF/HGF et le glutamate, dans l'activation de CREB ainsi que dans l'expression de gènes qui participent au développement de l'arborisation dendritique des neurones corticaux.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.
Resumo:
Chemosensory receptor gene families encode divergent proteins capable of detecting a huge diversity of environmental stimuli that are constantly changing over evolutionary time as organisms adapt to distinct ecological niches. While olfaction is dedicated to the detection of volatile compounds, taste is key to assess food quality for nutritional value and presence of toxic substances. The sense of taste also provides initial signals to mediate endocrine regulation of appetite and food metabolism and plays a role in kin recognition. The fruit fly Drosophila melanogaster is a very good model for studying smell and taste because these senses are very important in insects and because a broad variety of genetic tools are available in Drosophila. Recently, a family of 66 chemosensory receptors, the Ionotropic Receptors (IRs) was described in fruit flies. IRs are distantly related to ionotropic glutamate receptors (iGluRs), but their evolutionary origin from these synaptic receptors is unclear. While 16 IRs are expressed in the olfactory system, nothing is known about the other members of this repertoire. In this thesis, I describe bioinformatic, expression and functional analyses of the IRs aimed at understanding how these receptors have evolved, and at characterising the role of the non-olfactory IRs. I show that these have emerged at the basis of the protostome lineage and probably have acquired their sensory function very early. Moreover, although several IRs are conserved across insects, there are rapid and dramatic changes in the size and divergence of IR repertoires across species. I then performed a comprehensive analysis of IR expression in the larva of Drosophila melanogaster, which is a good model to study taste and feeding mechanisms as it spends most of its time eating or foraging. I found that most of the divergent members of the IR repertoire are expressed in both peripheral and internal gustatory neurons, suggesting that these are involved in taste perception. Finally, through the establishment of a new neurophysiological assay in larvae, I identified for the first time subsets of IR neurons that preferentially detect sugars and amino acids, indicating that IRs might be involved in sensing these compounds. Together, my results indicate that IRs are an evolutionarily dynamic and functionally versatile family of receptors. In contrast to the olfactory IRs that are well-conserved, gustatory IRs are rapidly evolving species-specific receptors that are likely to be involved in detecting a wide variety of tastants. - La plupart des animaux possèdent de grandes familles de récepteurs chimiosensoriels dont la fonction est de détecter l'immense diversité de composés chimiques présents dans l'environnement. Ces récepteurs évoluent en même temps que les organismes s'adaptent à leur écosystème. Il existe deux manières de percevoir ces signaux chimiques : l'olfaction et le goût. Alors que le système olfactif perçoit les composés volatiles, le sens du goût permet d'évaluer, par contact, la qualité de la nourriture, de détecter des substances toxiques et de réguler l'appétit et le métabolisme. L'un des organismes modèles les plus pertinents pour étudier le sens du goût est le stade larvaire de la mouche du vinaigre Drosophila melanogaster. En effet, la principale fonction du stade larvaire est de trouver de la nourriture et de manger. De plus, il est possible d'utiliser tous les outils génétiques développés chez la drosophile. Récemment, une nouvelle famille de 66 récepteurs chimiosensoriels appelés Récepteurs Ionotropiques (IRs) a été découverte chez la drosophile. Bien que leur orogine soit peu claire, ces récepteurs sont similaires aux récepteurs ionotropiques glutamatergiques impliqués dans la transmission synaptique. 16 IRs sont exprimés dans le système olfactif de la mouche adulte, mais pour l'instant on ne connaît rien des autres membres de cette famille. Durant ma thèse, j'ai effectué des recherches sur l'évolution de ces récepteurs ainsi que sur l'expression et la fonction des IRs non olfactifs. Je démontre que les IRs sont apparus chez l'ancêtre commun des protostomiens et ont probablement acquis leur fonction sensorielle très rapidement. De plus, bien qu'un certain nombre d'IRs olfactifs soient conservés chez les insectes, d'importantes variations dans la taille et la divergence des répertoires d'IRs entre les espèces ont été constatées. J'ai également découvert qu'un grand nombre d'IRs non olfactifs sont exprimés dans différents organes gustatifs, ce qui leur confère probablement une fonction dans la perception des goûts. Finalement, pour la première fois, des neurones exprimant des IRs ont été identifiés pour leur fonction dans la perception de sucres et d'acides aminés chez la larve. Mes résultats présentent les IRs comme une famille très dynamique, aux fonctions très variées, qui joue un rôle tant dans l'odorat que dans le goût, et dont la fonction est restée importante tout au long de l'évolution. De plus, l'identification de neurones spécialisés dans la perception de certains composés permettra l'étude des circuits neuronaux impliqués dans le traitement de ces informations.
Resumo:
Abstract The amygdala is a group of nuclei in the temporal lobe of the brain that plays a crucial role in anxiety and fear behavior. Sensory information converges in the basolateral and lateral nuclei of the amygdala, which have been the first regions in the brain where the acquisition of new (fear) memories has been associated with long term changes in synaptic transmission. These nuclei, in turn, project to the central nucleus of the amygdala. The central amygdala, through its extensive projections to numerous nuclei in the midbrain and brainstem, plays a pivotal role in the orchestration of the rapid autonomic and endocrine fear responses. In the central amygdala a large number of neuropeptides and receptors is expressed, among which high levels of vasopressin and oxytocin receptors. Local injections of these peptides into the amygdala modulate several aspects of the autonomic fear reaction. Interestingly, their effects are opposing: vasopressin tends to enhance the fear reactions, whereas oxytocin has anxiolytic effects. In order to investigate the neurophysiological mechanisms that could underlie this opposing modulation of the fear behavior, we studied the effects of vasopressin and oxytocin on the neuronal activity in an acute brain slice preparation of the rat central amygdala. We first assessed the effects of vasopressin and oxytocin on the spontaneous activity of central amygdala neurons. Extracellular single unit recordings revealed two major populations of neurons: a majority of neurons was excited by vasopressin and inhibited by oxytocin, whereas other neurons were only excited by oxytocin receptor activation. The inhibitory effect of oxytocin could be reduced by the block of GABAergic transmission, whereas the excitatory effects of vasopressin and oxytocin were not affected. In a second step we identified the cellular mechanisms for the excitatory effects of both peptides as well as the morphological and biochemical mechanisms underlying the opposing effects, by using sharp electrode recordings together with intracellular labelings. We revealed that oxytocin-excited neurons are localized in the lateral part (CeL) whereas vasopressin excited cells are found in the medial part of the central amygdala (CeM). The tracing of the neuronal morphology showed that the axon collaterals of the oxytocin-excited neurons project from the CeL, far into the CeM. Combined immunohistochemical stainings indicated that these projections are GABAergic. In the third set of experiments we investigated the synaptic interactions between the two identified cell populations. Whole-cell patch-clamp recordings in the CeM revealed that the inhibitory effect of oxytocin was caused by the massive increase of inhibitory GABAergic currents, which was induced by the activation of CeL neurons. Finally, the effects of vasopressin and oxytocin on evoked activity were investigated. We found on the one hand, that the probability of evoking action potentials in the CeM by stimulating the basolateral amygdala afferents was enhanced under vasopressin, whereas it decreased under oxytocin. On the other hand, the impact of cortical afferents stimulation on the CeL neurons was enhanced by oxytocin application. Taken together, these findings have allowed us to develop a model, in which the opposing behavioral effects of vasopressin and oxytocin are caused by a selective activation of two distinct populations of neurons in the GABAergic network of the central amygdala. Our model could help to develop new anxiolytic treatments, which modulate simultaneously both receptor systems. By acting on a GABAergic network, such treatments can further be tuned by combinations with classical benzodiazepines. Résumé: L'amygdale est un groupe de noyaux cérébraux localisés dans le lobe temporal. Elle joue un rôle essentiel dans les comportements liés à la peur et l'anxiété. L'information issue des aires sensorielles converge vers les noyaux amygdaliens latéraux et basolatéraux, qui sont les projections vers différents noyaux du tronc cérébral et de l'hypothalamus, joue un rôle clef premières régions dans lesquelles il a été démontré que l'acquisition d'une nouvelle mémoire (de peur) était associée à des changements à long terme de la transmission synaptique. Ces noyaux envoient leurs projections sur l'amygdale centrale, qui à travers ses propres dans l'orchestration des réponses autonomes et endocrines de peur. Le contrôle de l'activité neuronale dans l'amygdale centrale module fortement la réaction de peur. Ainsi, un grand nombre de neuropeptides sont spécifiquement exprimés dans l'amygdale centrale et un bon nombre d'entre eux interfère dans la réaction de peur et d'anxiété. Chez les rats, une forte concentration de récepteurs à l'ocytocine et à la vasopressine est exprimée dans le noyau central, et l'injection de ces peptides dans l'amygdale influence différents aspects de la réaction viscérale associée à la peur. Il est intéressant de constater que ces peptides exercent des effets opposés. Ainsi, la vasopressine augmente la réaction de peur alors que l'ocytocine a un effet anxiolytique. Afin d'investiguer les mécanismes neurophysiologiques responsables de ces effets opposés, nous avons étudié l'effet de la vasopressine et de l'ocytocine sur l'activité neuronale de préparations de tranches de cerveau de rats contenant entre autres de l'amygdale centrale. Tout d'abord, notre intérêt s'est porté sur les effets de ces deux neuropeptides sur l'activité spontanée dans l'amygdale centrale. Des enregistrements extracellulaires ont révélé différentes populations de neurones ; une majorité était excitée par la vasopressine et inhibée par l'ocytocine ; d'autres étaient seulement excités par l'activation du récepteur à l'ocytocine. L'effet inhibiteur de l'ocytocine a pu être réduit par l'inhibition de la transmission GABAergique, alors que ses effets excitateurs n'étaient pas affectés. Dans un deuxième temps, nous avons identifié les mécanismes cellulaires responsables de l'effet excitateur de ces deux peptides et analysé les caractéristiques morphologiques et biochimiques des neurones affectés. Des enregistrements intracellulaires ont permis de localiser les neurones excités par l'ocytocine dans la partie latérale de l'amygdale centrale (CeL), et ceux excités par la vasopressine dans sa partie médiale (CeM). Le traçage morphologique des neurones a révélé que les collatérales axonales des cellules excitées par l'ocytocine projetaient du CeL loin dans le CeM. De plus, des colorations immuno-histochimiques ont révélé que ces projections étaient GABAergiques. Dans un troisième temps, nous avons étudié les interactions synaptiques entre ces deux populations de cellules. Les enregistrements en whole-cell patch-clamp dans le CeM ont démontré que les effets inhibiteurs de l'ocytocine résultaient de l'augmentation massive des courants GABAergique résultant de l'activation des neurones dans le CeL. Finalement, les effets de l'ocytocine et de la vasopressine sur l'activité évoquée ont été étudiés. Nous avons pu montrer que la probabilité d'évoquer un potentiel d'action dans le CeM, par stimulation de l'amygdale basolatérale, était augmentée sous l'effet de la vasopressine et diminuée sous l'action de l'ocytocine. Par contre, l'impact de la stimulation des afférences corticales sur les neurones du CeL était augmenté par l'application de l'ocytocine. L'ensemble de ces résultats nous a permis de développer un modèle dans lequel les effets comportementaux opposés de la vasopressine et de l'ocytocine sont causés par une activation sélective des deux différentes populations de neurones dans un réseau GABAergique. Un tel modèle pourrait mener au développement de nouveaux traitements anxiolytiques en modulant l'activité des deux récepteurs simultanément. En agissant sur un réseau GABAergique, les effets d'un tel traitement pourraient être rendus encore plus sélectifs en association avec des benzodiazépines classiques.
Resumo:
Summary Prevalence of type 2 diabetes is increasing worldwide at alarming rates, probably secondarily to that of obesity. As type 2 diabetes is characterized by blood hyperglycemia, controlling glucose entry into tissues from the bloodstream is key to maintain glycemia within acceptable ranges. In this context, several glucose transporter isoforms have been cloned recently and some of them have appeared to play important regulatory roles. Better characterizing two of them (GLUT8 and GLUT9) was the purpose of my work. The first part of my work was focused on GLUT8, which is mainly expressed in the brain and is able to transport glucose with high affinity. GLUT8 is retained intracellularly at basal state depending on an N-terminal dileucine motif, thus implying that cell surface expression may be induced by extracellular triggers. In this regard, I was interested in better defining GLUT8 subcellular localization at basal state and in finding signals promoting its translocation, using an adenoviral vector expressing a myc epitope-tagged version of the transporter, thus allowing expression and detection of cell-surface GLUT8 in primary hippocampal neurons and PC 12 cells. This tool enabled me to found out that GLUT8 resides in a unique compartment different from lysosomes, endoplasmic reticulum, endosomes and the Golgi. In addition, absence of GLUT8 translocation following pharmacological activation of several signalling pathways suggests that GLUT8 does not ever translocate to the cell surface, but would rather fulfill its role in its unique intracellular compartment. The second part of my work was focused on GLUT9, which -contrarily to GLUT8 - is unable to transport glucose, but retains the ability to bind glucose-derived cross-linker molecules, thereby suggesting that it may be a glucose sensor rather than a true glucose transporter. The aim of the project was thus to define if GLUT9 triggers intracellular signals when activated. Therefore, adenoviral vectors expressing GLUTS were used to infect both ßpancreatic and liver-derived cell lines, as GLUTS is endogenously expressed in the liver. Comparison of gene expression between cells infected with the GLUTS-expressing adenovirus and cells infected with a GFP-expressing control adenovirus ended up in the identification of the transcription factor HNF4α as being upregulated in aGLUT9-dependent manner. Résumé La prévalence du diabète de type 2 augmente de façon alarmante dans le monde entier, probablement secondairement à celle de l'obésité. Le diabète de type 2 étant caractérisé par une glycémie sanguine élevée, l'entrée du glucose dans les tissus depuis la circulation sanguine constitue un point de contrôle important pour maintenir la glycémie à des valeurs acceptables. Dans ce contexte, plusieurs isoformes de transporteurs au glucose ont été clonées récemment et certaines d'entre elles sont apparues comme jouant d'importants rôles régulateurs. Mieux caractériser deux d'entre elles (GLUT8 et GLUT9) était le but de mon travail. La première partie de mon travail a été centrée sur GLUT8, qui est exprimé principalement dans le cerveau et qui peut transporter le glucose avec une haute affinité. GLUT8 est retenu intracellulairement à l'état basal de façon dépendante d'un motif dileucine N-terminal, ce qui implique que son expression à la surface cellulaire pourrait être induite par des stimuli extracellulaires. Dans cette optique, je me suis intéressé à mieux définir la localisation subcellulaire de GLUT8 à l'état basal et à trouver des signaux activant sa translocation, en utilisant comme outil un vecteur adénoviral exprimant une version marquée (tag myc) du transporteur, me permettant ainsi d'exprimer et de détecter GLUT8 à la surface cellulaire dans des neurones hippocampiques primaires et des cellules PC12. Cet outil m'a permis de montrer que GLUT8 réside dans un compartiment unique différent des lysosomes, du réticulum endoplasmique, des endosomes, ainsi que du Golgi. De plus, l'absence de translocation de GLUT8 à la suite de l'activation pharmacologique de plusieurs voies de signalisation suggère que GLUT8 ne transloque jamais à la membrane plasmique, mais jouerait plutôt un rôle au sein même de son compartiment intracellulaire unique. La seconde partie de mon travail a été centrée sur GLUT9, lequel -contrairement à GLUT8 -est incapable de transporter le glucose, mais conserve la capacité de se lier à des molécules dérivées du glucose, suggérant que ce pourrait être un senseur de glucose plutôt qu'un vrai transporteur. Le but du projet a donc été de définir si GLUT9 active des signaux intracellulaires quand il est lui-même activé. Pour ce faire, des vecteurs adénoviraux exprimant GLUT9 ont été utilisés pour infecter des lignées cellulaires dérivées de cellules ßpancréatiques et d'hépatocytes, GLUT9 étant exprimé de façon endogène dans le foie. La comparaison de l'expression des gènes entre des cellules infectées avec l'adénovirus exprimant GLUT9 et un adénovirus contrôle exprimant la GFP a permis d'identifier le facteur de transcription HNF4α comme étant régulé de façon GLUT9-dépendante. Résumé tout public Il existe deux types bien distincts de diabète. Le diabète de type 1 constitue environ 10 des cas de diabète et se déclare généralement à l'enfance. Il est caractérisé par une incapacité du pancréas à sécréter une hormone, l'insuline, qui régule la concentration sanguine du glucose (glycémie). Il en résulte une hyperglycémie sévère qui, si le patient n'est pas traité à l'insuline, conduit à de graves dommages à divers organes, ce qui peut mener à la cécité, à la perte des membres inférieurs, ainsi qu'à l'insuffisance rénale. Le diabète de type 2 se déclare plus tard dans la vie. Il n'est pas causé par une déficience en insuline, mais plutôt par une incapacité de l'insuline à agir sur ses tissus cibles. Le nombre de cas de diabète de type 2 augmente de façon dramatique, probablement à la suite de l'augmentation des cas d'obésité, le surpoids chronique étant le principal facteur de risque de diabète. Chez l'individu sain, le glucose sanguin est transporté dans différents organes (foie, muscles, tissu adipeux,...) où il est utilisé comme source d'énergie. Chez le patient diabétique, le captage de glucose est altéré, expliquant ainsi l'hyperglycémie. Il est ainsi crucial d'étudier les mécanismes permettant ce captage. Ainsi, des protéines permettant l'entrée de glucose dans la cellule depuis le milieu extracellulaire ont été découvertes depuis une vingtaine d'années. La plupart d'entre elles appartiennent à une sous-famille de protéines nommée GLUT (pour "GLUcose Transporters") dont cinq membres ont été caractérisés et nommés selon l'ordre de leur découverte (GLUT1-5). Néanmoins, la suppression de ces protéines chez la souris par des techniques moléculaires n'affecte pas totalement le captage de glucose, suggérant ainsi que des transporteurs de glucose encore inconnus pourraient exister. De telles protéines ont été isolées ces dernières années et nommées selon l'ordre de leur découverte (GLUT6-14). Durant mon travail de thèse, je me suis intéressé à deux d'entre elles, GLUT8 et GLUT9, qui ont été découvertes précédemment dans le laboratoire. GLUT8 est exprimé principalement dans le cerveau. La protéine n'est pas exprimée à la surface de la cellule, mais est retenue à l'intérieur. Des mécanismes complexes doivent donc exister pour déplacer le transporteur à la surface cellulaire, afin qu'il puisse permettre l'entrée du glucose dans la cellule. Mon travail a consisté d'une part à définir où se trouve le transporteur à l'intérieur de la cellule, et d'autre part à comprendre les mécanismes capables de déplacer GLUT8 vers la surface cellulaire, en utilisant des neurones exprimant une version marquée du transporteur, permettant ainsi sa détection par des méthodes biochimiques. Cela m'a permis de montrer que GLUT8 est localisé dans une partie de la cellule encore non décrite à ce jour et qu'il n'est jamais déplacé à la surface cellulaire, ce qui suggère que le transporteur doit jouer un rôle à l'intérieur de la cellule et non à sa surface. GLUT9 est exprimé dans le foie et dans les reins. Il ressemble beaucoup à GLUT8, mais ne transporte pas le glucose, ce qui suggère que ce pourrait être un récepteur au glucose plutôt qu'un transporteur à proprement parler. Le but de mon travail a été de tester cette hypothèse, en comparant des cellules du foie exprimant GLUT9 avec d'autres n'exprimant pas la protéine. Par des méthodes d'analyses moléculaires, j'ai pu montrer que la présence de GLUT9 dans les cellules du foie augmente l'expression de HNF4α, une protéine connue pour réguler la sécrétion d'insuline dans le pancréas ainsi que la production de glucose dans le foie. Des expériences complémentaires seront nécessaires afin de mieux comprendre par quels mécanismes GLUT9 influence l'expression de HNF4α dans le foie, ainsi que de définir l'importance de GLUT9 dans la régulation de la glycémie chez l'animal entier.
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
Recent single-cell studies in monkeys (Romo et al., 2004) show that the activity of neurons in the ventral premotor cortex covaries with the animal's decisions in a perceptual comparison task regarding the frequency of vibrotactile events. The firing rate response of these neurons was dependent only on the frequency differences between the two applied vibrations, the sign of that difference being the determining factor for correct task performance. We present a biophysically realistic neurodynamical model that can account for the most relevant characteristics of this decision-making-related neural activity. One of the nontrivial predictions of this model is that Weber's law will underlie the perceptual discrimination behavior. We confirmed this prediction in behavioral tests of vibrotactile discrimination in humans and propose a computational explanation of perceptual discrimination that accounts naturally for the emergence of Weber's law. We conclude that the neurodynamical mechanisms and computational principles underlying the decision-making processes in this perceptual discrimination task are consistent with a fluctuation-driven scenario in a multistable regime.
Resumo:
Résumé : L'amygdale latérale (AL) joue un .rôle essentiel dans la plasticité synaptique à la base du conditionnement de la peur. Malgré le faite que la majorité des cellules de l'AL reçoivent les afférentes nécessaires, une potentialisation dans seulement une partie d'entre elles est obligatoire afin que l'apprentissage de la peur ait lieu. Il a été montré que ces cellules expriment la forme active de CREB, et celui-ci a été associé aux cellules dites de type 'nonaccomrnodating' (nAC). Très récemment, une étude a impliqué les circuits récurrents de l'AL dans le conditionnement de la peur. Un lien entre ces deux observations n'a toutefois jamais été établi. t Nous avons utilisé un protocole in vitro de forte activation de l'AL, résultant dans l'induction de 'bursts' provenant de l'hippocampe et se propageant jusqu'à l'AL. Dans l'AL ces 'bursts' atteignent toutes les cellules et se propagent à travers plusieurs chemins. Utilisant ce protocole, nous avons, pour la première fois pu associer dans l'AL, des cellules connectées de manière récurrente avec des cellules de type nAC. Aussi bien dans ces dernières que dans les cellules de type 'accommodating' (AC), une diminution dans la transmission inhibitrice, à la fois exprimée de manière pré synaptique mais également indépendant de la synthèse de protéine a pu être observé. Au contraire, une potentialisation induite et exprimée au niveau pré synaptique ainsi que dépendante de la synthèse de protéine a pu être trouvé uniquement dans les cellules de type nAC. De plus, une hyperexcitabilité, dépendante des récepteurs NMDA a pu être observé, avec une sélection préférentielle des cellules du type nAC dans la génération de bursts. Nous avons également pu démontrer que la transformation d'un certain nombre de cellules de type AC en cellules dites nAC accompagnait cette augmentation générale de l'excitabilité de l'AL. Du faite da la grande quantité d'indices suggérant une connexion entre le système noradrénergique et les états de peur/d'anxiété, les effets d'une forte activation de l'AL sur ce dernier ont été investigués et ont révélés une perte de sa capacité de modulation du 'spiking pattern'. Finalement, des changements au niveau de l'expression d'un certain nombre de gènes, incluant celui codant pour le BDNF, a pu être trouvé à la suite d'une forte activation de l'AL. En raison du lien récemment décrit entre l'expression de la forme active de CREB et des cellules de type nAC ainsi que celui de l'implication des cellules de l'AL connectés de manière récurrente dans l'apprentissage de la peur, nos résultats nous permettent de suggérer un modèle expliquant comment la potentialisation des connections récurrentes entre cellules de type nAC pourrait être à la base de leur recrutement sélectif pendant le conditionnement de la peur. De plus, ils peuvent offrir des indices par rapport aux mécanismes à travers lesquels une sous population de neurones peut être réactivée par une stimulation externe précédemment inefficace, et induire ainsi un signal suffisamment fort pour qu'il soit transmit aux structures efférentes de l'AL. Abstract : The lateral nucleus of the amygdala (LA) is critically involved in the plasticity underlying fear-conditioned learning (Sah et al., 2008). Even though the majority of cells in the LA receive the necessary sensory inputs, potentiation in only a subset is required for fear learning to occur (Repa et al., 2001; Rumpel et al., 2005). These cells express active CREB (CAMP-responsive element-binding protein) (Han et al., 200, and this was related to the non-accommodating (nAC) spiking phenotype (Viosca et al., 2009; Zhou et al., 2009). In addition, a very recent study implicated recurrently connected cells of the LA in fear conditioned learning (Johnson et al., 2008). A link between the two observations has however never been made. In rats, we used an in vitro protocol of strong activation of the LA, resulting in bursting activity, which spread from the hippocampus to the LA. Within the LA, this activity reached all cells and spread via a multitude of pathways. Using this model, we were able to link, for the first time, recurrently connected cells in the LA with cells of the nAC phenotype. While we found a presynaptically expressed, protein synthesis independent decrease in inhibitory synaptic transmission in both nAC and accommodating (AC) cells, only nAC cells underwent a presynaptically induced and expressed, protein synthesis dependent potentiation. Moreover we observed an NMDA dependent hyperexcitability of the LA, with a preferential selection of nAC cells into burst generation. The transformation of a subset of AC cells into nAC cells accompanied this general increase in LA excitability. Given the considerable evidence suggesting a relationship between the central noradrenergic (NA) system and fear/anxiety states (Itoi, 2008), the effects of strong activation of the LA on the noradrenergic system were investigated, which revealed a loss of its modulatory actions on cell spiking patterns. Finally, we found changes in the expression levels of a number of genes; among which the one coding for $DNF, to be induced by strong activation of the LA. In view of the recently described link between nAC cells and expression of pCREB (phosphorylated cAMP-responsive element-binding protein) as well as the involvement of recurrently connected cells of the LA in fear-conditioned learning, our findings may provide a model of how potentiation of recurrent connections between nAC neurons underlies their recruitment into the fear memory trace. Additionally, they may offer clues as to the mechanisms through which a selected subset of neurons can be reactivated by smaller, previously ineffective external stimulations to respond with a sufficiently strong signal, which can be transmitted to downstream targets of the LA.