298 resultados para Neuronale Stammzellen
Resumo:
Neurosteroide können langsame genomische und schnelle nicht-genomische Effekte zeigen. Die Synthese und der Metabolismus von Neurosteroiden werden entwicklungsbedingt reguliert. In den letzten Jahren sind immer mehr schnelle Steroideffekte bekannt geworden, die sowohl über klassische als auch über nicht-klassische Rezeptoren laufen. Zum heutigen Stand der Forschung sind die morphologischen Effekte von Neurosteroiden auf das neuronale Cytoskelett und die involvierten Signalkaskaden noch weitgehend unerforscht. In diesem Zusammenhang stellen sich auch die Fragen nach den verantwortlichen Rezeptoren und dem Transportmechanismus sowie der subzellulären Lokalisation der Steroide. Die im Rahmen meiner Promotion erhaltenen Ergebnisse zeigen, dass die Steroide DHEA und Testosteron eine Reorganisation des Aktincytoskeletts in neuronalen Zellen induzieren und dass diese Effekte diesen Steroiden und nicht ihren Folgemetaboliten zuzuordnen sind. DHEA bewirkt die Kontraktion der Zellen, eine erhöhte Ausbildung von Stressfasern und fokalen Adhäsionskomplexen sowie die Bildung von Filopodien. Der diesen Effekten zu Grunde liegende Signalweg konnte eindeutig identifiziert werden. DHEA induziert in neuronalen Zellen die Aktivierung des Rho-Signalwegs. Diese Aktivierung führt zu einem erhöhten Phosphorylierungsstatus der regulatorischen leichten Kette von Myosin II (MRLC) an Serin 19 und der damit verbundenen erhöhten Myosin-Aktin-Interaktion. Die Ausbildung von Filopodien wird vermutlich über eine Aktivierung der GTPase Cdc42 vermittelt. Testosteron induziert das Auswachsen langer Neuriten sowie eine Verminderung von Stressfasern in neuronalen Zellen. Diese Effekte sind abhängig von der Aktivität der PI3-Kinase. Die im Rahmen dieser Arbeit gewonnenen Erkenntnisse deuten darauf hin, dass Testosteron über die PI3-Kinase und FAK den Rac-Signalweg induziert, da es zu einer Inhibierung des Rho-Signalwegs kommt. Zahlreiche Erkenntnisse weisen darauf hin, dass DHEA und Testosteron die Aktivierung der beteiligten Signalwege über einen G-Protein gekoppelten Rezeptor induzieren. DHEA und Testosteron beeinflussen auch die Expression und die Lokalisation der regulatorischen leichten Ketten von Myosin II. Im Gegensatz zu DHEA (Lokalisation der MRLC in der kortikalen Region der Zelle), induziert Testosteron eine Umlokalisation der MRLC in den Zellkern. Daher ist es denkbar, dass die MRLCs, wie auch Aktin, als Transkriptionsfaktoren wirken können. Die Synthese eines funktionalen, fluoreszierenden DHEA-Derivats (DHEA-Bodipy) ermöglichte erstmals, den Transport und die subzelluläre Lokalisation von DHEA in neuronalen Zellen zu beobachten. DHEA-Bodipy wird in neuronalen Zellen in den Mitochondrien lokalisiert. Diese Lokalisation ergibt völlig neue Ansätze im Verständnis zellulärer Wirkungsorte von Steroiden und beteiligter Rezeptoren. Das in meiner Arbeit vorgestellte Verfahren zur Fluoreszenzmarkierung von Steroiden bietet vielfältige Möglichkeiten im Einsatz zellbiologischer Methoden. Nach diesem Verfahren hergestellte, fluoreszierende Steroide eignen sich aufgrund ihrer Stabilität sehr gut für die Untersuchung des Transports und der subzellulären Lokalisation von Steroiden an fixierten und lebenden Zellen sowie für Colokalisationsexperimente. Diese Methode grenzt somit auch die Anzahl möglicher molekularer Interaktionspartner ein. Für Testosteron konnte ebenfalls ein fluoreszierendes Testosteron-Derivat (Testosteron-Bodipy) synthetisiert werden. Die Aufklärung der Effekte von Steroiden auf das neuronale Cytoskelett und der beteiligten Signalkaskaden sowie die Identifizierung der zellulären Wirkungsorte ermöglichen therapeutische Ansätze zur Behandlung neurodegenerativer Erkrankungen, deren Ursachen in Abnormitäten des Cytoskeletts oder fehlregulierter Neurosteroidogenese zu begründen sind.
Resumo:
The t(8;21) (q22;q22) translocation fusing the ETO (also known as MTG8) gene on human chromosome 8 with the AML1 (also called Runx1 or CBFα) gene on chromosome 21 is one of the most common genetic aberrations found in acute myeloid leukemia (AML). This chromosomal translocation occurs in 12 % of de novo AML cases and in up to 40 % of the AML-M2 subtype of the French-American-British classification. To date, the in vivo function of aberrant AML1-ETO fusion protein expression has been investigated by several groups. However, in these studies, controversial results were reported and some key issues remain unknown. Importantly, the consequences of aberrant AML1-ETO expression for self-renewing hematopoietic stem cells (HSCs), multipotent hematopoietic progenitors (MPPs) and lineage-restricted precursors are not known. rn The aim of this thesis was to develop a novel experimental AML1-ETO in vivo model that (i) overcomes the current lack of insight into the pre-leukemic condition of t(8;21)-associated AML, (ii) clarifies the in vivo consequences of AML1-ETO for HSCs, MPPs, progenitors and more mature blood cells and (iii) generates an improved mouse model suitable for mirroring the human condition. For this purpose, a conditional tet on/off mouse model expressing the AML1-ETO fusion protein from the ROSA26 (R26) locus was generated. rn Aberrant AML1-ETO activation in compound ROSA26/tetOAML1-ETO (R26/AE) mice caused high rates of mortality, an overall disruption of hematopoietic organs and a profound alteration of hematopoiesis. However, since the generalized activity of the R26 locus did not recapitulate the leukemic condition found in human patients, it was important to restrict AML1-ETO expression to blood cell lineages. Therefore, bone marrow cells from non-induced R26/AE mice were adoptively transplanted into sublethal irradiated RAG2-/- recipient mice. First signs of phenotypical differences between AML1-ETO-expressing and control mice were observed after eight to nine months of transgene induction. AML1-ETO-expressing mice showed profound changes in hematopoietic organs accompanied by manifest extramedullary hematopoiesis. In addition, a block in early erythropoiesis, B- and T-cell maturation was observed and granulopoiesis was significantly enhanced. Most interestingly, conditional activation of AML1-ETO in chimeric mice did not increase HSCs, MPPs, common lymphoid precursors (CLPs), common myeloid progenitors (CMPs) and megakaryocyte-erythrocyte progenitors (MEPs) but promoted the selective amplification of granulocyte-macrophage progenitors (GMPs). rn The results of this thesis provide clear experimental evidence how aberrant AML1-ETO modulates the developmental properties of normal hematopoiesis and establishes for the first time that AML1-ETO does not increase HSCs, MPPs and common lineage-restricted progenitor pools but specifically amplifies GMPs. The here presented mouse model not only clarifies the role of aberrant AML1-ETO for shaping hematopoietic development but in addition has strong implications for future therapeutic strategies and will be an excellent pre-clinical tool for developing and testing new approaches to treat and eventually cure AML.rn
Resumo:
Für die Entwicklung des zerebralen Kortex ist die radiale Migration von Neuronen von elementarer Bedeutung. Für diese radiale Migration sind extrazelluläre Signale, die mit den Neuronen interagieren und eine Umgestaltung des Zytoskeletts vermitteln, notwendig. Zu den extrazellulären Signalen gehört auch der Neurotransmitter GABA, der über Depolarisation der Neurone einen Ca2+-Einstrom vermittelt und dadurch die Modulation der Migration über Ca2+-abhängige Signalwege ermöglicht. Auch von Taurin ist bekannt, dass es die neuronale Migration beeinflusst. Frühere Studien zeigten, dass die Depolarisation von GABAA-Rezeptoren durch GABA zu einem Migrationsstop führt, wohingegen Picrotoxin-sensitive Rezeptoren die Migration von der Ventrikulären Zone in die Intermediäre Zone des pränatalen Kortex vermitteln. Obwohl zu den Picrotoxin-sensitiven Rezeptoren GABAA-, GABAC- und bestimmte Glyzinrezeptoren gehören, wurde die Rolle von GABAC- und Glyzinrezeptoren während der radialen Migration nie überprüft. Ziel dieser Dissertation war deshalb, den Einfluss von GABAC- und Glyzinrezeptoren auf die radiale Migration zu untersuchen. Unter Verwendung von Migrationsanalysen, Fluoreszenzmessungen, molekularbiologischen und histologischen Methoden wurde gezeigt, dass GABAC-Rezeptoren im unteren Bereiche des präfrontalen Kortex exprimiert werden, ihre Aktivierung durch GABA in der Intermediären Zone zu einer Depolarisation führt, dass GABAC-Rezeptoren die Migration fördern und dieser Effekt über den migrationsstoppenden Effekt der GABAA-Rezeptoren dominiert. Durch Aktivierung der Glyzinrezeptoren fördert Taurin die Migration.
Resumo:
Una delle grandi sfide della medicina moderna e dell’ingegneria biomedica è rappresentata dalla rigenerazione e il recupero dei tessuti nervosi. I danni al Sistema Nervoso Centrale (SNC) e Periferico (SNP) provocano effetti irreversibili e influiscono sulla qualità della vita dei pazienti. L’ingegneria tissutale è stata definita come “un campo interdisciplinare che applica i principi dell’ingegneria e delle scienze della vita per lo sviluppo di sostituti biologici che ripristinino, mantengano, o migliorino la funzione di un tessuto o di un intero organo” (Langer R et al, 1993). Lo sviluppo dei biomateriali, i progressi scientifici nel campo delle cellule staminali e dei fattori di crescita, nonché le migliorie nelle tecniche di differenziazione e del rilascio dei farmaci offrono nuove opportunità di sviluppo terapeutico. Sono stati infatti creati tessuti in laboratorio attraverso la combinazione di matrici extracellulari ingegnerizzate, comunemente definite scaffold, cellule e molecole biologicamente attive. Tali “impalcature”, forniscono un supporto fisico e biochimico alla crescita delle cellule nervose. In quest’ottica si configura come essenziale il contributo della seta e di una sua particolare molecola: la fibroina. Quest’ultima grazie alle specifiche caratteristiche di biocompatibilità, lenta degradabilità e alle notevoli proprietà meccaniche, è stata ampiamente studiata, in anni recenti, per nuove applicazioni in ambito biomedico, come nel caso dell’ingegneria dei tessuti e del rilascio di farmaci. La fibroina della seta utilizzabile in vari formati quali film, fibre, reti, maglie, membrane, gel e spugne supporta l'adesione, la proliferazione e la differenziazione in vitro di diversi tipi di cellule. In particolare studi recenti indicano che la seta ha una buona compatibilità per la crescita di cellule neuronali dell'ippocampo. In questo elaborato saranno presentate le caratteristiche della fibroina della seta come biomateriale, con particolare riferimento all’ingegnerizzazione e al processo di fabbricazione degli scaffold finalizzati al supporto della rigenerazione cellulare – neuronale in caso di insulti traumatici, acuti e/o cronici del Sistema Nervoso.
Resumo:
The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn
Resumo:
L'epilessia frontale notturna (EFN) è caratterizzata da crisi motorie che insorgono durante il sonno. Scopo del progetto è studiare le cause fisiopatologiche e morfo-funzionali che sottendono ai fenomeni motori nei pazienti con EFN e identificare alterazioni strutturali e/o metaboliche mediante tecniche avanzate di Risonanza Magnetica (RM). Abbiamo raccolto una casistica di pazienti con EFN afferenti al Centro Epilessia e dei Disturbi del Sonno del Dipartimento di Scienze Neurologiche, Università di Bologna. Ad ogni paziente è stato associato un controllo sano di età (± 5 anni) e sesso corrispondente. Tutti sono stati studiati mediante tecniche avanzate di RM comprendenti Spettroscopia del protone (1H-MRS), Tensore di diffusione ed imaging 3D ad alta risoluzione per analisi morfometriche. In particolare, la 1H-MRS è stata effettuata su due volumi di interesse localizzati nei talami e nel giro del cingolo anteriore. Sono stati inclusi nell’analisi finale 19 pazienti (7 M), età media 34 anni (range 19-50) e 14 controlli (6 M) età media 30 anni (range 19-40). A livello del cingolo anteriore il rapporto della concentrazione di N-Acetil-Aspartato rispetto alla Creatina (NAA/Cr) è risultato significativamente ridotto nei pazienti rispetto ai controlli (p=0,021). Relativamente all’analisi di correlazione, l'analisi tramite modelli di regressione multipla ha evidenziato che il rapporto NAA/Cr nel cingolo anteriore nei pazienti correlava con la frequenza delle crisi (p=0,048), essendo minore nei pazienti con crisi plurisettimanali/plurigiornaliere. Per interpretare il dato ottenuto è possibile solo fare delle ipotesi. L’NAA è un marker di integrità, densità e funzionalità neuronale. E’ possibile che alla base della EFN ci siano alterazioni metaboliche tessutali in precise strutture come il giro del cingolo anteriore. Questo apre nuove possibilità sull’utilizzo di strumenti di indagine basati sull’analisi di biosegnali, per caratterizzare aree coinvolte nella genesi della EFN ancora largamente sconosciute e chiarire ulteriormente l’eziologia di questo tipo di epilessia.
Resumo:
In Vertebraten und Insekten ist während der frühen Entwicklung des zentralen Nervensystems (ZNS), welches sich aus dem Gehirn und dem ventralen Nervensystem (VNS) zusammensetzt, die Unterteilung des Neuroektoderms (NE) in diskrete Genexpressions-Domänen entscheidend für die korrekte Spezifizierung neuraler Stammzellen. In Drosophila wird die Identität dieser Stammzellen (Neuroblasten, NB) festgelegt durch die positionellen Informationen, welche von den Produkten früher Musterbildungsgene bereitgestellt werden und das Neuroektoderm in anteroposteriorer (AP) und dorsoventraler (DV) Achse unterteilen. Die molekulargenetischen Mechanismen, welche der DV-Regionalisierung zugrunde liegen, wurden ausführlich im embryonalen VNS untersucht, sind für das Gehirn jedoch weitestgehend unverstanden. rnIm Rahmen dieser Arbeit wurden neue Erkenntnisse bezüglich der genetischen Mechanismen gewonnen, welche die frühembryonale Anlage des Gehirns in DV-Achse unterteilen. So konnte gezeigt werden, dass das cephale Lückengen empty spiracles (ems), das Segmentpolaritätsgen engrailed (en), sowie der „Epidermal growth factor receptor“ (EGFR) und das Gen Nk6 homeobox (Nkx6) für Faktoren codieren, die als zentrale Regulatoren die DV Musterbildung in der Gehirnanlage kontrollieren. Diese Faktoren interagieren zusammen mit den ebenso evolutionär konservierten Homöobox-Genen ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) und muscle segment homeobox (msh) in einem komplexen, regulatorischen DV-Netzwerk. Die im Trito (TC)- und Deutocerebrum (DC) entschlüsselten genetischen Interaktionen basieren überwiegend auf wechselseitiger Repression. Dementsprechend sorgen 1) Vnd und Ems durch gegenseitige Repression für eine frühe DV-Unterteilung des NE, und 2) wechselseitige Repression zwischen Nkx6 und Msh, als auch zwischen Ind und Msh für die Aufrechterhaltung der Grenze zwischen intermediärem und dorsalem NE. 3) Sowohl Ind als auch Msh sind in der Lage, die Expression von vnd zu inhibieren. Ferner konnte gezeigt werden, dass Vnd durch Repression von Msh als positiver Regulator von Nkx6 fungiert. Überdies beeinflusst Vnd die Expression von ind in segment-spezifischer Art und Weise: Vnd reprimiert ind-Expression im TC, sorgt jedoch für eine positive Regulation von ind im DC durch Repression von Msh. Auch der EGFR-Signalweg ist an der frühen DV-Regionalisierung des Gehirns beteiligt, indem er durch positive Regulation der msh-Repressoren Vnd, Ind und Nkx6 dazu beiträgt, dass die Expression von msh auf dorsales NE beschränkt bleibt. Ferner stellte sich heraus, dass das AP-Musterbildungsgen ems die Expression der DV-Gene kontrolliert und umgekehrt: Ems ist für die Aktivierung von Nkx6, ind und msh in TC und DC erforderlich ist, während Nkx6 und Ind zu einem späteren Zeitpunkt benötigt werden, um ems im intermediären DC gemeinsam zu reprimieren. Überdies konnte gezeigt werden, dass das Segmentpolaritätsgen en Aspekte der Expression von vnd, ind und msh in segment-spezifischer Art und Weise reguliert. En reprimiert ind und msh, hält jedoch vnd-Expression im DC aufrecht; im TC wird En benötigt, um die Expression von Msh herunter zu regulieren und somit die Aktivierung von ind dort zu ermöglichen.rnrnZusammengenommen zeigen diese Ergebnisse, dass AP Musterbildungsfaktoren in umfangreichen Maß die Expression der DV Gene im Gehirn (und VNS) kontrollieren. Ferner deuten diese Daten darauf hin, dass sich das „Konzept der ventralen Dominanz“, welches für die DV-Musterbildung im VNS postuliert wurde, nicht auf das genregulatorische Netzwerk im Gehirn übertragen lässt, da Interaktionen zwischen den beteiligten Faktoren hauptsächlich auf wechselseitiger (und nicht einseitiger) Repression basieren. Zudem scheint das Konzept der ventralen Dominanz auch für das VNS nicht uneingeschränkt zu gelten, da in dieser Arbeit u.a. gezeigt werden konnte, dass dorsal exprimiertes Msh in der Lage ist, intermediäres ind zu reprimieren. Interessanterweise ist gegenseitige Repression von Homöodomänen-Proteinen im sich entwickelnden Neuralrohr von Vertebraten weit verbreitet und darüberhinaus essenziell für den Aufbau diskreter DV-Vorläuferdomänen, und weist insofern eine große Ähnlichkeit zu den in dieser Arbeit beschriebenen DV-Musterbildungsvorgängen im frühembryonalen Fliegengehirn auf.rn
Resumo:
Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.
Resumo:
Das Glaukom stellt eine heterogene Gruppe von okularen Erkrankungen dar, deren Pathogenese sich durch einen langsamen, progradienten Untergang von retinalen Ganglienzellen und ihren Axonen auszeichnet. rnIn den letzten Jahren wurde im Kontext der Glaukompathogenese verstärkt die Beteiligung autoreaktiver Antikörper diskutiert. Ein Schwerpunkt dieser Arbeit bestand in dem Vergleich solcher Autoantikörper-Reaktionen in den Serum- und Kammerwasserproben einzelner Glaukompatienten. Hierdurch sollte geklärt werden, inwieweit die Immunreaktivitäten dieser beiden Körperflüssigkeiten miteinander übereinstimmen und ob sich Hinweise auf eine lokale Antikörperproduktion im immunprivilegierten Auge finden lassen. Mittels eines etablierten Protein-Microarray-Verfahrens wurden die Immunreaktionen gegen 40 verschiedene Antigene, wie z.B. Hitzeschock-Proteine oder neuronale Strukturproteine, untersucht. Die Ergebnisse zeigten, dass die detektierten Autoantikörper-Reaktionen gegen mehr als 80% der untersuchten Antigene in beiden Körperflüssigkeiten miteinander übereinstimmen. Verdeutlicht wird hierdurch, dass die Antikörper-basierenden immunologischen Vorgänge im Auge bzw. Kammerwasser, trotz dessen Abschottung vom Blutkreislauf durch die Blut-Retina-Schranke, denen des Serums stark ähneln. Nur vereinzelt lassen sich Hinweise auf eine lokale Antikörperproduktion im Auge finden, wodurch die Bedeutung der detektierten Serumantikörper-Reaktionen für die Glaukomerkrankung belegt wird. rnEin weiterer Schwerpunkt der Arbeit lag auf der Detektion möglicher veränderter Proteinexpressionen in den Retinae und Serumproben von Glaukompatienten, die potentiell zu den neurodegenerativen Prozessen der Glaukompathogenese beitragen. Um die Analyse spezifischer Proteinexpressionen zu ermöglichen, wurde das Verfahren des Antikörper-Microarrays etabliert und auf die Fragestellung angewendet. Untersucht wurden hierbei vor allem die Abundanzen von Komplementproteinen, Zytokinen und Hitzeschock-Proteinen, aber auch die von verschiedenen neuronalen Strukturproteinen. Als Probenmaterial dienten Serum- und Retinaproben von Glaukompatienten, die vergleichend denen von gesunden Probanden gegenübergestellt wurden. Die Analyse erbrachte die Erkenntnis, dass neben der verstärkten Expression von Komplementproteinen in der Retina (z.B. C3, C6) auch im Serum der Glaukompatienten eine erhöhte Konzentration dieser Proteine vorliegt, die im Rahmen der Glaukomerkrankung möglicherweise ebenfalls eine Rolle spielen. Ähnliches konnte für verschiedene Zytokine, wie z.B. TNF-α, IFN-γ oder IL1-β beobachtet werden, die in den untersuchten Retinae von Glaukomprobanden, teilweise auch in den Serumproben der Patienten, in verstärktem Maße detektiert werden konnten. Die erhöhte Produktion von Zytokinen in der Retina ist wahrscheinlich auf die Aktivierung von Gliazellen zurückzuführen, ein Ereignis für das in dieser Arbeit zahlreiche Hinweise gefunden werden konnten. Die Gliaaktivierung wird vermutlich durch apoptotische Prozesse in der Retina ausgelöst, eventuell aber auch durch eine erfolgte Komplementaktivierung. Darüber hinaus konnten mittels eines massenspektrometrischen Verfahrens weitere Expressionsunterschiede verschiedener retinaler Proteine bei Glaukompatienten festgestellt werden. Diese Veränderungen, wie z.B. geminderte Mengen von ROS-eliminierenden Proteinen, wie der Superoxid Dismutase und Peroxiredoxin-2, begünstigen bzw. verstärken sehr wahrscheinlich die neurodegenerativen Prozesse in der Retina von GlaukompatientenrnInwieweit die untersuchten Faktoren kausativ an den neurodegenerativen Prozessen beteiligt sind, bleibt ungeklärt, jedoch untermauert deren Vielzahl die Notwendigkeit, die Ursache der Glaukomerkrankung als komplexe Interaktion und Wechselwirkung verschiedener Komponenten zu betrachten und nicht als einen einzelnen fehlgesteuerten Mechanismus.rn
Resumo:
Le alterazioni della funzionalità mitocondriale detengono un ruolo cruciale nella patogenesi della malattia di Alzheimer (AD), sostenendo il processo neurodegenerativo attraverso meccanismi quali la riduzione della disponibilità energetica e la iperproduzione di ROS. Alle numerose ipotesi di patogenesi dell’AD, si è recentemente affiancata la cosiddetta ipotesi vascolare. Nei soggetti AD è stata riscontrata una significativa riduzione della disponibilità di ossigeno a livello neuronale (ipossia neuronale). Da numerosi studi è poi emerso che l’ipossia gioca un ruolo fondamentale nello sviluppo dell’AD contribuendo a più vie patogenetiche contemporaneamente. Tuttavia, non sono stati ancora chiariti tutti i meccanismi attraverso cui l’ipossia esplica la sua azione di danno. Lo scopo di questo studio è stato quello di contribuire a chiarire il ruolo patologico dell’ipossia nell’AD, analizzando principalmente le alterazioni della funzionalità mitocondriale indotte dalla riduzione della disponibilità di ossigeno. Nella prima fase dello studio cellule PC12 sono state coltivate in presenza di β-amiloide e ipossia. In questo modello abbiamo osservato un potenziamento dei fenomeni di deplezione dell’ATP e di generazione delle ROS indotti dalla Aβ quando anche l’ipossia era presente come fonte di danno cellulare, ipotizzando per i due fattori un effetto congiunto di tipo additivo. Nella seconda fase abbiamo esposto all’ipossia fibroblasti prelevati da pazienti AD portatori di mutazioni a carico dei geni APP e PSEN. La presenza di mutazioni predisponenti ad un fenotipo AD era in grado di determinare un danno bioenergetico e ossidativo. Le alterazioni bioenergetiche riscontrate in normossia risultavano ulteriormente potenziate quando i fibroblasti erano coltivati in ipossia, mentre lo stato di stress ossidativo veniva evidenziato solo in condizioni ipossiche. Sulla base dei risultati finora conseguiti si può ipotizzare che uno dei meccanismi attraverso cui l’ipossia esplica la sua azione di danno nella AD, possa essere dovuto alla capacità di potenziare ulteriormente le alterazioni della funzionalità mitocondriale.
Resumo:
Die Transplantation von allogenen hämatopoetischen Stammzellen stellt für viele Patienten mit hämatologischen Erkrankungen, wie beispielsweise akuter Leukämie, oftmals die einzige kurative Therapieoption dar. Die Erkennung von Empfängerantigenen durch immunkompetente Zellen des Spenders bietet dabei die Basis für erwünschte Graft-versus-Tumor-Effekte, verursacht jedoch häufig außerdem die unerwünschte Graft-versus-Host Disease (GvHD), eine mitunter schwerwiegende Komplikation. In der vorliegenden Arbeit wurden potentielle Mechanismen zur Hemmung alloreaktiver CD4+ und CD8+ T-Zellen (TZ) und folglich zur Hemmung der akuten GvHD in einem experimentellen GvHD-Modell untersucht, welches auf dem Transfer von allogenen Zellen zwischen MHC-inkompatiblen Mausstämmen basiert. Die vorliegende Arbeit weist zum Einen darauf hin, dass das Fehlen MyD88- und TRIF-vermittelter Toll-like-Rezeptor-Signale zumindest im Rahmen des hier verwendeten Transplantationsmodells nicht zwingend zu einer Hemmung der akuten GvHD führt. Zum Anderen konnte belegt werden, dass CD4+ CD25+ regulatorische T-Zellen (Tregs) kompetente Suppressoren der durch alloreaktive CD4+ und CD8+ TZ ausgelösten akuten GvHD darstellen. In weiterführenden Experimenten ist gezeigt worden, dass die Tregs sich verschiedener Mechanismen bedienen, um ihre Zielzellen zu inhibieren. Das suppressive Zytokin Interleukin-10 kann als löslicher Mediator zumindest in vitro offenbar eine Rolle bei der Treg-vermittelten Suppression alloreaktiver TZ spielen. Da jedoch auch Tregs aus Interleukin-10-defizienten Spendern die GvHD-Entstehung in den Empfängern abschwächen konnten, müssen noch weitere Mechanismen involviert sein. Es konnte in einer gemischten Leukozyten Reaktion in vitro eine zellkontaktabhängige Kommunikation mittels gap junctions hauptsächlich zwischen den Tregs und den allogenen Dendritischen Zellen (DCs) nachgewiesen werden, welche prinzipiell den Transfer von cAMP möglich macht. Die Kommunikation zwischen Tregs und DCs resultierte in einem supprimierten Phänotyp der DCs, gekennzeichnet durch eine verminderte Expression kostimulatorischer Moleküle auf ihrer Oberfläche. Solche supprimierten DCs können als Folge die alloreaktiven Spender-TZ vermutlich nicht aktivieren. Das cAMP-erhöhende Rolipram konnte in einer gemischten Leukozyten Reaktion in vitro die Proliferation alloreaktiver CD4+ und CD8+ TZ hemmen. Daneben konnte die Treg-vermittelte Suppression alloreaktiver TZ und der GvHD in vivo durch die zusätzliche Verabreichung von Rolipram noch gesteigert werden. Im letzten Kapitel dieser Arbeit wurde beschrieben, dass die alleinige Aktivierung alloreaktiver CD8+ TZ ausreichend ist, um eine akute GvHD auszulösen. In diesem Zusammenhang konnte nachgewiesen werden, dass CD4+ CD25+ Tregs die akute GvHD auch in einer scheinbar MHC-II-unabhängigen Weise hemmen können. Zusammenfassend belegt die vorliegende Arbeit, dass Tregs in einem MHC-inkompatiblen Transplantationsmodell alloreaktive CD4+ und CD8+ TZ und folglich die Entstehung einer GvHD effizient hemmen können. Bei der Hemmung der GvHD kommen wahrscheinlich verschiedene Mechanismen zum Tragen. Zumindest in vivo scheint von Tregs produziertes Interleukin-10 eine untergeordnete Rolle bei der Suppression alloreaktiver TZ und der GvHD zu spielen, hierbei steht vermutlich vielmehr der cAMP-abhängige Suppressionsmechanismus im Vordergrund.
Resumo:
During the perinatal period the developing brain is most vulnerable to inflammation. Prenatal infection or exposure to inflammatory factors can have a profound impact on fetal neurodevelopment with long-term neurological deficits, such as cognitive impairment, learning deficits, perinatal brain damage and cerebral palsy. Inflammation in the brain is characterized by activation of resident immune cells, especially microglia and astrocytes whose activation is associated with a variety of neurodegenerative disorders like Alzheimer´s disease and Multiple sclerosis. These cell types express, release and respond to pro-inflammatory mediators such as cytokines, which are critically involved in the immune response to infection. It has been demonstrated recently that cytokines also directly influence neuronal function. Glial cells are capable of releaseing the pro-inflammatory cytokines MIP-2, which is involved in cell death, and tumor necrosis factor alpha (TNFalpha), which enhances excitatory synaptic function by increasing the surface expression of AMPA receptors. Thus constitutively released TNFalpha homeostatically regulates the balance between neuronal excitation and inhibition in an activity-dependent manner. Since TNFalpha is also involved in neuronal cell death, the interplay between neuronal activity MIP-2 and TNFalpha may control the process of cell death and cell survival in developing neuronal networks. An increasing body of evidence suggests that neuronal activity is important in the regulation of neuronal survival during early development, e.g. programmed cell death (apoptosis) is augmented when neuronal activity is blocked. In our study we were interested on the impact of inflammation on neuronal activity and cell survival during early cortical development. To address this question, we investigated the impact of inflammation on neuronal activity and cell survival during early cortical development in vivo and in vitro. Inflammation was experimentally induced by application of the endotoxin lipopolysaccharide (LPS), which initiates a rapid and well-characterized immune response. I studied the consequences of inflammation on spontaneous neuronal network activity and cell death by combining electrophysiological recordings with multi-electrode arrays and quantitative analyses of apoptosis. In addition, I used a cytokine array and antibodies directed against specific cytokines allowing the identification of the pro-inflammatory factors, which are critically involved in these processes. In this study I demonstrated a direct link between inflammation-induced modifications in neuronal network activity and the control of cell survival in a developing neuronal network for the first time. Our in vivo and in vitro recordings showed a fast LPS-induced reduction in occurrence of spontaneous oscillatory activity. It is indicated that LPS-induced inflammation causes fast release of proinflammatory factors which modify neuronal network activity. My experiments with specific antibodies demonstrate that TNFalpha and to a lesser extent MIP-2 seem to be the key mediators causing activity-dependent neuronal cell death in developing brain. These data may be of important clinical relevance, since spontaneous synchronized activity is also a hallmark of the developing human brain and inflammation-induced alterations in this early network activity may have a critical impact on the survival of immature neurons.
Resumo:
Il trigono della vescica urinaria (UBT) è un'area limitata attraverso la quale penetrano nella vescica la maggior parte dei vasi e fibre e in cui le fibre nervose e neuroni intramurali sono più concentrati. Mediante l’utilizzo combinato di un tracciante retrogrado(FB) e dell’immunoistochimica sono stati valutati il fenotipo e l’area del soma dei neuroni dei gangli spinali (DRG), dei neuroni post-gangliari, il fenotipo dei gangli della catena simpatica (STG) e i gangli mesenterici caudali (CMG) innervanti l’UBT. - Caratterizzazione dei neuroni dei DRG con: peptide correlato al gene della calcitonina (CGRP)(30±3%, 29±3%, rispettivamente), sostanza P(SP)(26±8%, 27±12%), ossido nitrico sintasi neuronale (nNOS)(21±4%; 26±7%), neurofilamento 200kDa (NF200)(75±14%, 81±7% ) , transient receptor potential vanilloid1 (TRPV1)(48±13%, 43±6%) e isolectina-B4-positivi (IB4) (56±6%;43±10%). I neuroni sensoriali, distribuiti da L2 a Ca1 (DRG), hanno presentato una localizzazione segmentale, mostrando maggior densità nei DRG L4-L5 e S2-S4. I neuroni sensoriali lombari sono risultati significativamente più grandi di quelle sacrali (1.112±624μm2 vs716±421μm2). Complessivamente, questi dati indicano che le vie lombari e sacrali probabilmente svolgono ruoli diversi nella trasmissione sensitiva del trigono della vescica urinaria. -I neuroni FB+ della STG e dei CMG sono risultati immunoreattivi per la tirosina idrossilasi (TH)(66±10,1%, 53±8,2%, rispettivamente), la dopamina beta-idrossilasi (DβH)(62±6,2%, 52±6,2%), neuropeptideY (NPY)(59±8%; 66±7%), CGRP(24±3%, 22±3%), SP(22±2%; 38±8%), polipeptide intestinale vasoattivo (VIP)(19±2%; 35±4%), nNOS(15±2%; 33±8%), trasportatore vescicolare dell'acetilcolina (VAChT)(15±2%; 35±5%), leu-encefalina (LENK)(14±7%; 26±9%), e somatostatina (SOM)(12±3%;32±7%).Il numero medio di neuroni FB+ (1845,1±259,3) era nella STG in L1-S3, con i pirenofori più piccoli (465,6±82.7μm2). Un gran numero (4287,5±1450,6) di neuroni FB+ di piccole dimensioni (476,1±103,9μm2) sono stati localizzati lungo il margine dei CMG. Il maggior numero (4793,3±1990,8) di neuroni FB + è stato osservato nel plesso pelvico, dove i neuroni marcati erano raggruppati in micro-gangli e con pirenoforo ancora più piccolo (374,9±85,4 μm2).
Resumo:
Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.
Resumo:
In the central nervous system (CNS), oligodendrocytes form the multilamellar and compacted myelin sheath by spirally wrapping around defined axons with their specialised plasma membrane. Myelin is crucial for the rapid saltatory conduction of nerve impulses and for the preservation of axonal integrity. The absence of the major myelin component Myelin Basic Protein (MBP) results in an almost complete failure to form compact myelin in the CNS. The mRNA of MBP is sorted to cytoplasmic RNA granules and transported to the distal processes of oligodendrocytes in a translationally silent state. A main mediator of MBP mRNA localisation is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 which binds to the cis-acting A2 response element (A2RE) in the 3’UTR of MBP mRNA. A signalling cascade had been identified that triggers local translation of MBP at the axon-glial contact site, involving the neuronal cell adhesion molecule (CAM) L1, the oligodendroglial plasma membrane-tethered Fyn kinase and Fyn-dependent phosphorylation of hnRNP A2. This model was confirmed here, showing that L1 stimulates Fyn-dependent phosphorylation of hnRNP A2 and a remodelling of A2-dependent RNA granule structures. Furthermore, the RNA helicase DDX5 was confirmed here acting together with hnRNP A2 in cytoplasmic RNA granules and is possibly involved in MBP mRNA granule dynamics.rnLack of non-receptor tyrosine kinase Fyn activity leads to reduced levels of MBP and hypomyelination in the forebrain. The multiadaptor protein p130Cas and the RNA-binding protein hnRNP F were verified here as additional targets of Fyn in oligodendrocytes. The findings point at roles of p130Cas in the regulation of Fyn-dependent process outgrowth and signalling cascades ensuring cell survival. HnRNP F was identified here as a novel constituent of oligodendroglial cytoplasmic RNA granules containing hnRNP A2 and MBP mRNA. Moreover, it was found that hnRNP F plays a role in the post-transcriptional regulation of MBP mRNA and that defined levels of hnRNP F are required to facilitate efficient synthesis of MBP. HnRNP F appears to be directly phosphorylated by Fyn kinase what presumably contributes to the initiation of translation of MBP mRNA at the plasma membrane.rnFyn kinase signalling thus affects many aspects of oligodendroglial physiology contributing to myelination. Post-transcriptional control of the synthesis of the essential myelin protein MBP by Fyn targets is particularly important. Deregulation of these Fyn-dependent pathways could thus negatively influence disorders involving the white matter of the nervous system.rnrn