901 resultados para Network anomaly detection
Resumo:
Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.
Resumo:
Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids. © 2013 IEEE.
Resumo:
This work presents the first study and development of an electronic tongue analysis system for the monitoring of nitrogen stable species: nitrate, nitrite and ammonium in water. The electronic tongue was composed of an array of 15 potentiometric poly(vinyl chloride) membrane sensors sensitive to cations and anions plus an artificial neural network (ANN) response model. The building of the ANN model was performed in a medium containing sodium, potassium, and chloride as interfering ions, thus simulating real environmental samples. The correlation coefficient in the cross-validation of nitrate, nitrite and ammonium was satisfactory in the three cases with values higher than 0.92. Finally, the utility of the proposed system is shown in the monitoring of the photoelectrocatalytic treatment of nitrate. © 2013 Elsevier B.V.
Resumo:
ABSTRACT: This work presents a method to analyze characteristics of a set of genes that can have an influence in a certain anomaly, such as a particular type of cancer. A measure is proposed with the objective of diagnosing individuals regarding the anomaly under study and some characteristics of the genes are analyzed. Maximum likelihood equations for general and particular cases are presented.
Resumo:
INTRODUÇÃO: Apesar das medidas de controle da sífilis materna e congênita estarem disponíveis no Brasil, existem dificuldades da rede em prover o diagnóstico laboratorial da infecção durante o pré-natal. O objetivo deste estudo foi confirmar a presença do Treponema pallidum pela PCR em mulheres com sorologia positiva ao VDRL e com resultado letal da gravidez, isto é, aborto, natimorto e neomorto. MÉTODOS: Estudo retrospectivo realizado em mulheres VDRL-sororeativas com resultado negativo da gravidez, admitidas na Fundação Santa Casa de Misericórdia do Pará FSCM-PA entre janeiro e julho de 2004. As amostras de soro e DNA de sangue total foram obtidas no mesmo período da triagem pelo VDRL. Estas amostras foram analisadas pelo ELISA IgG, FTA-Abs IgM e PCR simples (polA). RESULTADOS: Durante o período de estudo, 0,7% (36/4.912) das mulheres com resultado letal da gravidez apresentaram VDRL positivo. O genepolA foi amplificado em 72,7% (24/33) destas mulheres,com 55,6% (20/36) e 94,4% (34/36) apresentando anticorpos tipo IgG e IgM contra o T. pallidum, respectivamente. A comparação destes resultados mostrou uma diferença estatística significativa, sendo que os resultados da PCR versus FTA-Abs Ig Mmostraram-se concordantes, sugerindo que a sífilis materna era uma infecção ativa. A causa básica de morte dos conceptos não foi relatada em 97,2% (35/36) dos casos. Entre as mulheres que foram submetidas ao VDRL no pré-natal, somente quatro das nove soropositivas receberam tratamento. CONCLUSÕES: A elevada frequência de sífilis no grupo de estudo indica a fragilidade do serviço no diagnóstico, tratamento e monitoramento da infecção, comprometendo o controle epidemiológico.
Resumo:
Internet access by wireless networks has grown considerably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paper proposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achieved great results, which showed the effectiveness of our proposed approach.
Resumo:
Wireless LAN technology, despite the numerous advantages it has over competing technologies, has not seen widespread deployment. A primary reason for markets not adopting this technology is its failure to provide adequate security. Data that is sent over wireless links can be compromised with utmost ease. In this project, we propose a distributed agent based intrusion detection and response system for wireless LANs that can detect unauthorized wireless elements like access points, wireless clients that are in promiscuous mode etc. The system reacts to intrusions by either notifying the concerned personnel, in case of rogue access points and promiscuous nodes, or by blocking unauthorized users from accessing the network resources.
Resumo:
Wireless LANs are growing rapidly and security has always been a concern. We have implemented a hybrid system, which will not only detect active attacks like identity theft causing denial of service attacks, but will also detect the usage of access point discovery tools. The system responds in real time by sending out an alert to the network administrator.
Resumo:
In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.
Resumo:
Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.
Resumo:
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Resumo:
Recent progress in microelectronic and wireless communications have enabled the development of low cost, low power, multifunctional sensors, which has allowed the birth of new type of networks named wireless sensor networks (WSNs). The main features of such networks are: the nodes can be positioned randomly over a given field with a high density; each node operates both like sensor (for collection of environmental data) as well as transceiver (for transmission of information to the data retrieval); the nodes have limited energy resources. The use of wireless communications and the small size of nodes, make this type of networks suitable for a large number of applications. For example, sensor nodes can be used to monitor a high risk region, as near a volcano; in a hospital they could be used to monitor physical conditions of patients. For each of these possible application scenarios, it is necessary to guarantee a trade-off between energy consumptions and communication reliability. The thesis investigates the use of WSNs in two possible scenarios and for each of them suggests a solution that permits to solve relating problems considering the trade-off introduced. The first scenario considers a network with a high number of nodes deployed in a given geographical area without detailed planning that have to transmit data toward a coordinator node, named sink, that we assume to be located onboard an unmanned aerial vehicle (UAV). This is a practical example of reachback communication, characterized by the high density of nodes that have to transmit data reliably and efficiently towards a far receiver. It is considered that each node transmits a common shared message directly to the receiver onboard the UAV whenever it receives a broadcast message (triggered for example by the vehicle). We assume that the communication channels between the local nodes and the receiver are subject to fading and noise. The receiver onboard the UAV must be able to fuse the weak and noisy signals in a coherent way to receive the data reliably. It is proposed a cooperative diversity concept as an effective solution to the reachback problem. In particular, it is considered a spread spectrum (SS) transmission scheme in conjunction with a fusion center that can exploit cooperative diversity, without requiring stringent synchronization between nodes. The idea consists of simultaneous transmission of the common message among the nodes and a Rake reception at the fusion center. The proposed solution is mainly motivated by two goals: the necessity to have simple nodes (to this aim we move the computational complexity to the receiver onboard the UAV), and the importance to guarantee high levels of energy efficiency of the network, thus increasing the network lifetime. The proposed scheme is analyzed in order to better understand the effectiveness of the approach presented. The performance metrics considered are both the theoretical limit on the maximum amount of data that can be collected by the receiver, as well as the error probability with a given modulation scheme. Since we deal with a WSN, both of these performance are evaluated taking into consideration the energy efficiency of the network. The second scenario considers the use of a chain network for the detection of fires by using nodes that have a double function of sensors and routers. The first one is relative to the monitoring of a temperature parameter that allows to take a local binary decision of target (fire) absent/present. The second one considers that each node receives a decision made by the previous node of the chain, compares this with that deriving by the observation of the phenomenon, and transmits the final result to the next node. The chain ends at the sink node that transmits the received decision to the user. In this network the goals are to limit throughput in each sensor-to-sensor link and minimize probability of error at the last stage of the chain. This is a typical scenario of distributed detection. To obtain good performance it is necessary to define some fusion rules for each node to summarize local observations and decisions of the previous nodes, to get a final decision that it is transmitted to the next node. WSNs have been studied also under a practical point of view, describing both the main characteristics of IEEE802:15:4 standard and two commercial WSN platforms. By using a commercial WSN platform it is realized an agricultural application that has been tested in a six months on-field experimentation.
Resumo:
Context-aware computing is currently considered the most promising approach to overcome information overload and to speed up access to relevant information and services. Context-awareness may be derived from many sources, including user profile and preferences, network information, sensor analysis; usually context-awareness relies on the ability of computing devices to interact with the physical world, i.e. with the natural and artificial objects hosted within the "environment”. Ideally, context-aware applications should not be intrusive and should be able to react according to user’s context, with minimum user effort. Context is an application dependent multidimensional space and the location is an important part of it since the very beginning. Location can be used to guide applications, in providing information or functions that are most appropriate for a specific position. Hence location systems play a crucial role. There are several technologies and systems for computing location to a vary degree of accuracy and tailored for specific space model, i.e. indoors or outdoors, structured spaces or unstructured spaces. The research challenge faced by this thesis is related to pedestrian positioning in heterogeneous environments. Particularly, the focus will be on pedestrian identification, localization, orientation and activity recognition. This research was mainly carried out within the “mobile and ambient systems” workgroup of EPOCH, a 6FP NoE on the application of ICT to Cultural Heritage. Therefore applications in Cultural Heritage sites were the main target of the context-aware services discussed. Cultural Heritage sites are considered significant test-beds in Context-aware computing for many reasons. For example building a smart environment in museums or in protected sites is a challenging task, because localization and tracking are usually based on technologies that are difficult to hide or harmonize within the environment. Therefore it is expected that the experience made with this research may be useful also in domains other than Cultural Heritage. This work presents three different approaches to the pedestrian identification, positioning and tracking: Pedestrian navigation by means of a wearable inertial sensing platform assisted by the vision based tracking system for initial settings an real-time calibration; Pedestrian navigation by means of a wearable inertial sensing platform augmented with GPS measurements; Pedestrian identification and tracking, combining the vision based tracking system with WiFi localization. The proposed localization systems have been mainly used to enhance Cultural Heritage applications in providing information and services depending on the user’s actual context, in particular depending on the user’s location.
From fall-risk assessment to fall detection: inertial sensors in the clinical routine and daily life
Resumo:
Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.