942 resultados para Nerve-terminals
Resumo:
Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of −58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s−1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.
Resumo:
Interpretations of steroid hormone actions as slow, nuclear, transcriptional events have frequently been seen as competing against inferences of rapid membrane actions. We have discovered conditions where membrane-limited effects potentiate later transcriptional actions in a nerve cell line. Making use of a two-pulse hormonal schedule in a transfection system, early and brief administration of conjugated, membrane-limited estradiol was necessary but not sufficient for full transcriptional potency of the second estrogen pulse. Efficacy of the first pulse depended on intact signal transduction pathways. Surprisingly, the actions of both pulses were blocked by a classical estrogen receptor (ER) antagonist. Thus, two different modes of steroid hormone action can synergize.
Resumo:
It is known that slow breathing (<10 breaths min(-1)) reduces blood pressure ( BP), but the mechanisms involved in this phenomenon are not completely clear. The aim of this study was to evaluate the acute responses of the muscle sympathetic nerve activity, BP and heart rate (HR), using device-guided slow breathing ( breathe with interactive music (BIM)) or calm music. In all, 27 treated mild hypertensives were enrolled. Muscle sympathetic nerve activity, BP and HR were measured for 5min before the use of the device (n=14) or while subjects listened to calm music (n=13), it was measured again for 15 min while in use and finally, 5min after the interventions. BIM device reduced respiratory rate from 16 +/- 3 beats per minute (b.p.m) to 5.5 +/- 1.8 b.p.m (P<0.05), calm music did not affect this variable. Both interventions reduced systolic (-6 and -4mmHg for both) and diastolic BPs (-4mmHg and -3mmHg, respectively) and did not affect the HR (-1 and -2 b.p.m respectively). Only the BIM device reduced the sympathetic nerve activity of the sample (-8bursts min(-1)). In conclusion, both device-guided slow breathing and listening to calm music have decreased BP but only the device-guided slow breathing was able to reduce the peripheral sympathetic nerve activity. Hypertension Research ( 2010) 33, 708-712; doi: 10.1038/hr.2010.74; published online 3 June 2010
Resumo:
The etiology of idiopathic peripheral facial palsy (IPFP) is still uncertain; however, some authors suggest the possibility of a viral infection. Aim: to analyze the ultrastructure of the facial nerve seeking viral evidences that might provide etiological data. Material and Methods: We studied 20 patients with peripheral facial palsy (PFP), with moderate to severe FP, of both genders, between 18-60 years of age, from the Clinic of Facial Nerve Disorders. The patients were broken down into two groups - Study: eleven patients with IPFP and Control: nine patients with trauma or tumor-related PFP. The fragments were obtained from the facial nerve sheath or from fragments of its stumps - which would be discarded or sent to pathology exam during the facial nerve repair surgery. The removed tissue was fixed in 2% glutaraldehyde, and studied under Electronic Transmission Microscopy. Results: In the study group we observed an intense repair cellular activity by increased collagen fibers, fibroblasts containing developed organelles, free of viral particles. In the control group this repair activity was not evident, but no viral particles were observed. Conclusion: There were no viral particles, and there were evidences of intense activity of repair or viral infection.
Resumo:
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved
Resumo:
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are modulated by photic and non-photic stimuli. In rodents, direct photic stimuli reach the SCN mainly through the retinohypothalamic tract (RHT), whereas indirect photic stimuli are mainly conveyed by the geniculohypothalamic tract (GHT). In rodents, retinal cells form a pathway that reaches the intergeniculate leaflet (IGL) where they establish synapses with neurons that express neuropeptide Y (NPY), hence forming the GHT projecting to the SCN. In contrast to the RHT, which has been well described in primates, data regarding the presence or absence of the IGL and GHT in primates are contradictory. Some studies have suggested that an area of the pregeniculate nucleus (PGN) of primates might be homologous to the IGL of rodents, but additional anatomical and functional studies on primate species are necessary to confirm this hypothesis. Therefore, this study investigated the main histochemical characteristics of the PGN and the possible existence of the GHT in the SCN of the primate Cebus, comparing the distribution of NPY immunoreactivity, serotonin (5-HT) immunoreactivity and retinal terminal fibers in these two structures. The results show that a collection of cell bodies containing NPY and serotonergic immunoreactivity and retinal innervations are present within a zone that might be homologous to the IGL of rodents. The SCN also receives dense retinal innervations and we observed an atypical distribution of NPY- and 5-HT-immunoreactive fibers without regionalization in the ventral part of the nucleus as described for other species. These data may reflect morphological differences in the structures involved in the regulation of circadian rhythms among species and support the hypothesis that the GHT is present in some higher primates (diurnal animals). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/+/- TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.
Resumo:
Purpose: The purpose of this study was to evaluate the bone healing kinetics around commercially pure titanium implants following inferior alveolar nerve (IAN) lateralization in a rabbit model. Materials and Methods: Inferior alveolar nerve lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, 1 implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. During the 8-week healing period, various bone labels were administered for fluorescent microscopy analysis. The animals were euthanized by anesthesia overdose, and the mandibular blocks were exposed by sharp dissection. Nondecalcified samples were prepared for optical light and scanning electron microscopy (SEM) evaluation. Results: SEM evaluation showed bone modeling/remodeling between the IAN and implant surface. Fluorochrome area fraction labeling at different times during the healing period showed that bone apposition mainly occurred during the first 2 weeks after implantation. Conclusions: The results obtained showed that bone healing/deposition occurred between the alveolar nerves in contact with a commercially pure titanium implant. No interaction between the nerve and the implant was detected after the 8-week healing period. Appositional bone healing occurred around the nerve bundle structure, restoring the mandibular canal integrity and morphology.
Resumo:
The presence of lingual papillae and the nerve endings in the middle region of the tongue mucosa of collared peccary (Tayassu tajacu) were studied using scanning electron microscopy and light microscopy, based upon the silver impregnation method. The middle region of tongue mucosa revealed numerous filiform and fungiform papillae. The thick epithelial layer showed epithelial cells and a dense connective tissue layer containing nerve fibre bundles and capillaries. The sensory nerve endings, intensely stained by silver impregnation, were usually non-encapsulated and extended into the connective tissue of the filiform and fungiform papillae very close to the epithelial cells. In some regions, the sensory nerves fibres formed a dense and complex network of fine fibrils. The presence of these nerve fibrils may characterize the mechanisms of transmission of sensitive impulses to the tongue mucosa.