958 resultados para Natural Organic-matter
Resumo:
The objective of this thesis is to improve the understanding of what processes and mechanism affects the distribution of polychlorinated biphenyls (PCBs) and organic carbon in coastal sediments. Because of the strong association of hydrophobic organic contaminants (HOCs) such as PCBs with organic matter in the aquatic environment, these two entities are naturally linked. The coastal environment is the most complex and dynamic part of the ocean when it comes to both cycling of organic matter and HOCs. This environment is characterised by the largest fluxes and most diverse sources of both entities. A wide array of methods was used to study these processes throughout this thesis. In the field sites in the Stockholm archipelago of the Baltic proper, bottom sediments and settling particulate matter were retrieved using sediment coring devices and sediment traps from morphometrically and seismically well-characterized locations. In the laboratory, the samples have been analysed for PCBs, stable carbon isotope ratios, carbon-nitrogen atom ratios as well as standard sediment properties. From the fieldwork in the Stockholm Archipelago and the following laboratory work it was concluded that the inner Stockholm archipelago has a low (≈ 4%) trapping efficiency for freshwater-derived organic carbon. The corollary is a large potential for long-range waterborne transport of OC and OC-associated nutrients and hydrophobic organic pollutants from urban Stockholm to more pristine offshore Baltic Sea ecosystems. Theoretical work has been carried out using Geographical Information Systems (GIS) and statistical methods on a database of 4214 individual sediment samples, each with reported individual PCB congener concentrations. From this work it was concluded that the continental shelf sediments are key global inventories and ultimate sinks of PCBs. Depending on congener, 10-80% of the cumulative historical emissions to the environment are accounted for in continental shelf sediments. Further it was concluded that the many infamous and highly contaminated surface sediments of urban harbours and estuaries of contaminated rivers cannot be of importance as a secondary source to sustain the concentrations observed in remote sediments. Of the global shelf PCB inventory < 1% are in sediments near population centres while ≥ 90% is in remote areas (> 10 km from any dwellings). The remote sub-basin of the North Atlantic Ocean contains approximately half of the global shelf sediment inventory for most of the PCBs studied.
Resumo:
Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20–30 N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, 10 and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddy-field generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; farfield) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 70% in THAA in the eddy-field relative to FF stations. 15 Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected “fresher” material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of 20 diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of 15 mmolCm−2 d−1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at 25 near-coastal stations relative to open ocean stations.
Resumo:
[EN] Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20?30_ N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddyfield generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; far-field) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 2 times in THAA in the eddy-field relative to FF stations. Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected ?fresher? material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of _15 mmolCm?2 d?1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at near-coastal stations relative to open ocean stations.
Resumo:
Universidad de Las Palmas de Gran Canaria. Facultad de Ciencias del Mar. Trabajo Fin de Título para la obtención del Graduado en Ciencias del Mar, 2013-2014
Resumo:
Isolated water-soluble analytes extracted from fog water collected during a radiation fog event near Fresno, CA were analyzed using collision induced dissociation and ultrahigh-resolution mass spectrometry. Tandem mass analysis was performed on scan ranges between 100-400 u to characterize the structures of nitrogen and/or sulfur containing species. CHNO, CHOS, and CHNOS compounds were targeted specifically because of the high number of oxygen atoms contained in their molecular formulas. The presence of 22 neutral losses corresponding to fragment ions was evaluated for each of the 1308 precursors. Priority neutral losses represent specific polar functional groups (H2O, CO2, CH3OH, HNO3, SO3, etc., and several combinations of these). Additional neutral losses represent non-specific functional groups (CO, CH2O, C3H8, etc.) Five distinct monoterpene derived organonitrates, organosulfates, and nitroxy-organosulfates were observed in this study, including C10H16O7S, C10H17NO7S, C10H17 NO8S, C10H17NO9S, and C10H17NO10S. Nitrophenols and linear alkyl benzene sulfonates were present in high abundance. Liquid chromatography/mass spectrometery methodology was developed to isolate and quantify nitrophenols based on their fragmentation behavior.
Resumo:
Diagenesis of particulate organic matter in lake sediments consumes and produces chemical species that have significant effects on water quality, e.g. oxygen and nitrate depletion and attendant mediation of nutrient and metal recycling. A mechanistic, mass balance model (SED2K) is applied here in quantifying the time course and magnitude of sediment response to reductions in depositional fluxes of organic matter. In applying the model, direct, site-specific measurements of the sedimentation and POM rates in Onondaga Lake are used, leaving only the diagenesis coefficient (solubilization) for estimation by fit to downcore POM profiles. Model calibration is constrained by the dual requirement that both POM profiles and the time series of efflux of the products of diagenesis must be matched. Simulations point to the existence of POM preservation processes at depth, a phenomenon that may enhance the timing and magnitude of lake recovery.
Resumo:
Organic matter amendments are applied to contaminated soil to provide a better habitat for re-vegetation and remediation, and olive mill waste compost (OMWC) has been described as a promising material for this aim. We report here the results of an incubation experiment carried out in flooded conditions to study its influence in As and metal solubility in a trace elements contaminated soil. NPK fertilisation and especially organic amendment application resulted in increased As, Se and Cu concentrations in pore water. Independent of the amendment, dimethylarsenic acid (DMA) was the most abundant As species in solution. The application of OMWC increased pore water dissolved organic-carbon (DOC) concentrations, which may explain the observed mobilisation of As, Cu and Se; phosphate added in NPK could also be in part responsible of the mobilisation caused in As. Therefore, the application of soil amendments in mine soils may be particularly problematic in flooded systems.
Resumo:
To make use of the isotope ratio of nonexchangeable hydrogen (δ2Hn (nonexchangeable)) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (Corg) and organic N (Norg) recovery of demineralized SOM concentrates was significantly increased (Corg recovery using existing techniques vs new demineralization method: 58% vs 78%; Norg recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ2Hn values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ2Hn analyses of SOM as a new tool in paleoclimatology or geospatial forensics.
Resumo:
Purpose Precipitation of dissolved organic matter (DOM) by multivalent cations is important for biogeochemical cycling of organic carbon. We investigated to which extent cation bridges are involved in DOM precipitation and how cross-links by cations and water molecule bridges (WaMB) stabilise the matrix of precipitated DOM. Materials and methods DOM was precipitated from the aqueous extract of a forest floor layer adding solutions of Ca(NO3)2, Al(NO3)3 and Pb(NO3)2 with different initial metal cation/C (Me/C) ratios. Precipitates were investigated by differential scanning calorimetry before and after ageing to detect cation bridges, WaMB and restructuring of supramolecular structure. Results and discussion Twenty-five to sixty-seven per cent of the dissolved organic carbon was precipitated. The precipitation efficiency of cations increased in the order Ca < Al < Pb, while the cation content of precipitates increased in the order Pb < Ca < Al. The different order and the decrease in the WaMB transition temperature (T*) for Al/C > 3 is explained by additional formation of small AlOOH particles. Thermal analysis indicated WaMB and their disruption at T* of 53–65 °C. Like cation content, T* increased with increasing Me/C ratio and in the order Ca < Pb < Al for low Me/C. This supports the general assumption that cross-linking ability increases in the order Ca < Pb < Al. The low T* for high initial Me/C suggests less stable and less cross-linked precipitates than for low Me/C ratios. Conclusions Our results suggest a very similar thermal behaviour of OM bound in precipitates compared with soil organic matter and confirms the relevance of WaMB in stabilisation of the supramolecular structure of cation-DOM precipitates. Thus, stabilisation of the supramolecular structure of the DOM precipitates is subjected to dynamics in soils.