462 resultados para Nanoporous Carbons
Resumo:
The brain uses lactate produced by glycolysis as an energy source. How lactate originated from the blood stream is used to fuel brain metabolism is not clear. The current study measures brain metabolic fluxes and estimates the amount of pyruvate that becomes labeled in glial and neuronal compartments upon infusion of [3-(13) C]lactate. For that, labeling incorporation into carbons of glutamate and glutamine was measured by (13) C magnetic resonance spectroscopy at 14.1 T and analyzed with a two-compartment model of brain metabolism to estimate rates of mitochondrial oxidation, glial pyruvate carboxylation, and the glutamate-glutamine cycle as well as pyruvate fractional enrichments. Extracerebral lactate at supraphysiological levels contributes at least two-fold more to replenish the neuronal than the glial pyruvate pools. The rates of mitochondrial oxidation in neurons and glia, pyruvate carboxylase, and glutamate-glutamine cycles were similar to those estimated by administration of (13) C-enriched glucose, the main fuel of brain energy metabolism. These results are in agreement with primary utilization of exogenous lactate in neurons rather than astrocytes. © 2014 Wiley Periodicals, Inc.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.
Resumo:
There are NMR data of ¹H and 13C of the iridoid plumieride, but controversy related to the assignments of the protons H-3 or H-10 and carbons C-6 or C-7 and C-3 or C-10 are described in the literature. There are a little discussion regarding to the resonance assignment of protons of the glycoside unity. Analysis based on 2D shift correlated NMR spectra (COSY, HETCOR, HETCORLR) and NOE difference ¹H NMR spectra allowed to assign unambigously the chemical shift of ¹H and 13C of plumieride which has been found in the literature with non coincident values.
Resumo:
Phytochemical investigation of the leaves and branches of a specimen of Ouratea semiserrata led to the isolation and characterization of ent-16alpha,17-dihydroxykauran-19-oic acid, along with other natural products. This diterpenoid and its derivatives were used to unambiguous ¹H and 13C chemical shifts assignments and to indicate some mistake data described in the literature as consequence mainly of the stereochemicals of the chiral carbons C-4 and C-16. The HRMS spectra were also analysed.
Resumo:
For two important metal oxides (MO, M=Mg, Zn) we predict, via accurate electronic structure calculations, that new low-density nanoporous crystalline phases may be accessible via the coalescence of nanocluster building blocks. Specifically, we consider the assembly of cagelike (MO)12 clusters exhibiting particularly high gas phase stability, leading to new polymorphs with energetic stabilities rivaling (and sometimes higher) than those of known MO polymorphs.
Resumo:
This article describes a novel approach to the separation of fatty acids ranging from 8 to 20 carbons using capillary electrophoresis with contactless conductivity detection. Complete separation of nine linear chain fatty acids (from C8:0 to C20:0) was achieved in 15 min under normal polarity operation. Limits of detection ranged from 35 to 319 µmol L-1 for C20:0 to C8:0, respectively. The optimized running electrolyte composition was 5.0 mmol L-1 phosphate buffer at pH 7, 4.0 mmol L-1 dimethyl-b-cyclodextrin, 2.0 mmol L-1 trimethyl-b-cyclodextrin, acetonitrile 50% (v/v), and methanol 20% (v/v). The applicability of the separation system was demonstrated by the analysis of coconut vegetable oil.
Resumo:
A series of seven Schiff bases have been synthesized from 3,3-diphenylpropilamine and substituted benzaldehydes. These imines were treated with NaBH4 in ethanol affording the corresponding amines in 98-55% yields. A molecular modeling study was performed with the Schiff bases in order to compare the theoretical parameters with the experimental results. The theoretical parameters were obtained by AM1 and PM3 semi-empirical methods. The analysis of charge, electron densities and LUMO coefficients suggested that the most favorable interactions should occur with Schiff bases containing electron-donating groups, in accordance with experimental yields, showing that the higher reactivity is due to higher electrophilic character of imine carbons.
Resumo:
The present study describes phenol adsorption on commercial active carbon (CAF) under alkaline conditions in the concentration range of 0.01 to 2.08 mmol L-1. Surface characterization has been performed by means of surface area measurements, IR spectroscopy and Boehm titration. The effect of temperature on the adsorption equilibrium isotherm was investigated at 23, 30, 40, 50 and 60 °C. The results showed that adsorption capacity decreased with increasing temperature. The adsorption kinetics and the role of surface characteristics on the adsorption of phenol also discussed.
Resumo:
In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS 13C techniques, did not show significant correlation between the E4/E6 ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS 13C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E4/E6 ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures.
Resumo:
This work consists in a study about the chemical activation of charred rice hulls using NaOH as the activation agent. The influence of the naturally-occurring silica was particularly evidenced. X-ray diffraction patterns showed the formation of sodium carbonate and silicates in the activated samples, whereas thermogravimetric curves revealed a strong reduction in the ash content of these samples after washing with water. Nitrogen adsorption data indicated a microporosity development only in the washed samples, with BET surface area values of 450 and 1380 m²/g achieved for the samples activated at 800 °C starting from the precursor with or without silica, respectively.
Resumo:
Adsorption of heavy metal cations by activated carbon is dependent on the capacity of the material in promoting adsorption and the time needed to reach equilibrium. Carbon samples were previously activated either by phosphoric acid treatment at 400 ºC or by steam at 800 ºC. The results of Pb(II) adsorption by these activated carbons have shown that equilibrium was typically reached within the first 5 min of contact between carbon and metal solution, with a maximum adsorption capacity higher than 69 mg g-1 for the vapor-activated sample. Temperature influences the sorption capacity, which corresponds to an endothermic process. Lead(II) retention is more pronounced at high temperature and low pH.
Resumo:
Coffee fruit processing is one of the most polluting activities in agriculture due to the large amount of waste generated in the process. In this work, coffee parchment was employed as precursor for the production of carbons activated with ZnCl2 (CAP). The material was characterized using N2 adsorption/desorption at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The material showed a surface area of 521.6 m²g-1 and microporous structure. CAP was applied as adsorbent for the removal of methylene blue dye in aqueous medium. The adsorption capacity was found to be about 188.7 mg g-1.
Resumo:
Ferric chloride as a new activating agent was used to obtain activated carbons from agroindustrial waste. This material was prepared at three temperatures of pyrolysis, 200, 280 and 400 ºC. The carbonaceous materials obtained after the activation processes showed high specific surface areas (BET), with values higher than 900 m² g-1. The materials showed different behaviors in the adsorption of methylene blue dye and reactive red textile dye in water solutions. An important fact in the use of FeCl3 as an activating agent is that the activation temperature is at 280 ºC, well below of those commonly employed in chemical or physical activations described in the literature.