927 resultados para Naming speed
Resumo:
Terminal impact angle control is crucial for enhancement of warhead effectiveness. In the literature, this problem has been addressed in the context of targets with lower speeds than the interceptor. However, in the current defence scenario, targets of much higher speed than the interceptor is a reality. This paper presents a generic proportional navigation (PN) based guidance law, that uses the standard PN and novel Retro-PN guidance laws based on the initial engagement geometry and terminal engagement requirements, for three dimensional engagement scenario against higher speed nonmaneuvering targets to control terminal impact angle. Results are obtained on the set of achievable impact angles and conditions on the navigation constant to achieve them. Simulation results are given to support the theoretical findings.
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.
Resumo:
As petrol prices are going up in developing countries in upcoming decades low cost electric cars will become more and more popular in developing world. One of the main deciding factors for success of electric cars specially in developing world in upcoming decades will be its cost. This paper shows a cost effective method to control the speed of low cost brushed D.C. motor by combining a IC 555 Timer with a High Boost Converter. The main purpose of using High Boost Converter since electric cars needs high voltage and current which a High Boost Converter can provide even with low battery supply.
Resumo:
We present experimental results on the generation and collapse of multielectron bubbles in liquid helium. By applying voltage pulses to a tungsten tip above the surface of the liquid, millimetre sized deformations were formed. Using high speed photography, we have imaged the disintegration of these deformations into bubbles of sizes ranging from ten to few hundred microns. At temperatures less than 2 K, the bubbles split into smaller bubbles and then disappeared in a time scale of few milliseconds. Smaller bubbles were formed at temperatures around 3 K, but were visible for more than hundreds of milliseconds. Although we have not been able to measure their charge directly, some of these bubbles responded to electric fields, implying these were indeed multielectron bubbles. With the existing theoretical picture, it is not possible to understand the strong dependence of the lifetime of multielectron bubbles on temperature.
Resumo:
A new partial integrated guidance and control design approach is proposed in this paper, which combines the benefits of both integrated guidance and control as well as the conventional guidance and control design philosophies. The proposed technique essentially operates in a two-loop structure. In the outer loop, an optimal guidance problem is formulated considering the nonlinear six degrees-of-freedom equation of motion of the interceptor. From this loop, the required pitch and yaw rates are generated by solving a nonlinear suboptimal guidance formulation in a computationally efficient manner while simultaneously assuring roll stabilization. Next, the inner loop tracks these outer loop body rate commands. This manipulation of the six degrees-of-freedom dynamics in both loops preserves the inherent time scale separation property between the translational and rotational dynamics, while retaining the philosophy of integrated guidance and control design as well. Because of this, the tuning process is quite straightforward and nontedious as well. Extensive six degrees-of-freedom simulations studies have been carried out, considering three-dimensional engagement geometry, to demonstrate the effectiveness of the proposed new design approach engaging high-speed ballistic targets. A variety of comparison studies have also been carried out to demonstrate the effectiveness of the proposed approach.
Resumo:
Voltage source inverter (VSI)-fed six-phase induction motor (IM) drives have high 6n +/- 1, n = odd-order harmonic currents. This is because these currents, driven by the corresponding harmonic voltages in the inverter output, are limited only by the stator leakage impedance, as these harmonics are absent in the back electromotive force of the motor. To suppress the harmonic currents, either bulky inductive harmonic filters or complex pulsewidth modulation (PWM) techniques have to be used. This paper proposes a harmonic elimination scheme using switched capacitor filters for a VSI-fed split-phase IM drive. Two 3-phase inverters fed from capacitors are used on the open-end side of the motor to suppress 6n +/- 1, n = odd-order harmonics. A PWM scheme that can suppress the harmonics as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected, and the fundamental power is always drawn from the main inverters. The proposed scheme is verified with a detailed experimental study. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters.
Resumo:
A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This brief presents the capturability analysis of a 3-D Retro-proportional navigation (Retro-PN) guidance law, which uses a negative navigation constant (as against the usual positive one), for intercepting targets having higher speeds than interceptors. This modification makes it possible to achieve collision conditions that were inaccessible to the standard PN law. A modified polar coordinate system, that makes the model more compact, is used in this brief for capturability analysis. In addition to the ratio of the target to interceptor speeds, the directional cosines of the interceptor, and target velocity vectors play a crucial role in the capturability. The existence of nontrivial capture zone of the Retro-PN guidance law and necessary and sufficient conditions, for capturing the target in finite time, are presented. A sufficient condition on the navigation constant is derived to ensure finiteness of the line-of-sight turn rate. The results are more extensive than those available for 2-D engagements, which can be obtained as special cases of this brief. Simulation results are given to support the analytical results.
Resumo:
High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.
Resumo:
A new generator topology for microhydel power plants, capable of unsupervised operation, is proposed. While conventional microhydel plants operate at constant speed with switched ballast loads, the proposed generator, based on the wound rotor induction machine, operates at variable speed and does away with the need for ballast loads. This increases reliability and substantially decreases system costs and setup times. The proposed generator has a simplified decoupled control structure with stator-referenced voltage control similar to a conventional synchronous generator, and rotor-side frequency control that is facilitated by rotating electronics mounted on the rotor. While this paper describes an isolated plant, the topology can also be tailored for distributed generation enabling conversion of the available hydraulic power into useful electrical power when the grid is present, and supplying local loads in the event of grid outage.
Resumo:
A simple method employing an optical probe is presented to measure density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a random dot pattern. Local slopes of the distorted wavefront are obtained from shifts of the dots in the pattern. Local shifts in the dots are accurately measured by cross-correlating local shifted shadows with the corresponding unshifted originals. The measured slopes are suitably unwrapped by using a discrete cosine transform based phase unwrapping procedure and also through iterative procedures. The unwrapped phase information is used in an iterative scheme for a full quantitative recovery of density distribution in the shock around the model through refraction tomographic inversion. Hypersonic flow field parameters around a missile shaped body at a free-stream Mach number of 5.8 measured using this technique are compared with the numerically estimated values. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
In the literature, the impact angle control problem has been addressed mostly against lower speed or stationary targets. However, in the current defense scenario, targets of much higher speeds than interceptors are a reality. Moreover, approaching a higher speed target from a specified angle is important for effective seeker acquisition and enhanced warhead effectiveness. This paper proposes a composite proportional navigation guidance law using a combination of the standard proportional navigation and the recently proposed retroproportional navigation guidance laws for intercepting higher speed nonmaneuvering targets at specified impact angles in three-dimensional engagements. An analysis of the set of achievable impact angles by the composite proportional navigation guidance law is presented. It is shown that there exists an impulse bias that, when added to the composite proportional navigation guidance command, expands this set further by reversing the direction of the line-of-sight angular rotation vector. A bound on the magnitude of the bias is also derived. Finally, an implementation of this impulse bias, in the form of a series of pulses, is proposed and analyzed. Simulation results are also presented to support the analysis.
Resumo:
In the literature, the impact angle control problem has been addressed mostly against lower speed or stationary targets. However, in the current defense scenario, targets of much higher speeds than interceptors are a reality. Moreover, approaching a higher speed target from a specified angle is important for effective seeker acquisition and enhanced warhead effectiveness. This paper proposes a composite proportional navigation guidance law using a combination of the standard proportional navigation and the recently proposed retroproportional navigation guidance laws for intercepting higher speed nonmaneuvering targets at specified impact angles in three-dimensional engagements. An analysis of the set of achievable impact angles by the composite proportional navigation guidance law is presented. It is shown that there exists an impulse bias that, when added to the composite proportional navigation guidance command, expands this set further by reversing the direction of the line-of-sight angular rotation vector. A bound on the magnitude of the bias is also derived. Finally, an implementation of this impulse bias, in the form of a series of pulses, is proposed and analyzed. Simulation results are also presented to support the analysis.