987 resultados para NF-KAPPAB


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein Bcl10 contributes to adaptive and innate immunity through the assembly of a signaling complex that plays a key role in antigen receptor and FcR-induced NF-κB activation. Here we demonstrate that Bcl10 has an NF-κB-independent role in actin and membrane remodeling downstream of FcR in human macrophages. Depletion of Bcl10 impaired Rac1 and PI3K activation and led to an abortive phagocytic cup rich in PI(4,5)P(2), Cdc42, and F-actin, which could be rescued with low doses of F-actin depolymerizing drugs. Unexpectedly, we found Bcl10 in a complex with the clathrin adaptors AP1 and EpsinR. In particular, Bcl10 was required to locally deliver the vesicular OCRL phosphatase that regulates PI(4,5)P(2) and F-actin turnover, both crucial for the completion of phagosome closure. Thus, we identify Bcl10 as an early coordinator of NF-κB-mediated immune response with endosomal trafficking and signaling to F-actin remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitellogenin genes are expressed specifically in the liver of female oviparous vertebrates under the strict control of estrogen. To explain this tissue-specific expression, we performed a detailed analysis of the Xenopus laevis vitellogenin gene B1 promoter by DNase I footprinting and gel mobility-shift assays. We characterized five binding sites for the ubiquitous factor CTF/NF-I. Two of these sites are close to the TATA-box, whereas the others are located on both sides of the estrogen responsive unit formed by two imperfect estrogen response elements. Moreover two liver-enriched factors, C/EBP and HNF3, were found to interact with multiple closely spaced proximal promoter elements in the first 100 base pairs upstream of the TATA-box. To confirm the physiological significance of this in vitro analysis, in vivo DNase I footprinting experiments were carried out using the ligation-mediated polymerase chain reaction technique. The various cis-elements characterized in vitro as binding sites for known transcription factors and more particularly for liver-enriched transcription factors are efficiently recognized in vivo as well, suggesting that they play an important role in the control of the liver-specific vitellogenin gene B1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated disease-dependent gene delivery in the brain using an AAV vector responding to NFκB activation as a probe for inflammatory responses. This vector, injected focally in the parenchyma prior to a systemic kainic acid (KA) injection mediated inducible transgene expression in the hippocampus but not in the cerebellum, regions, respectively, known to be affected or not by the pathology. However, such a focal approach relies on previous knowledge of the model parameters and does not allow to predict the whole brain response to the disease. Global brain gene delivery would allow to predict the regional distribution of the pathology as well as to deliver therapeutic factors in all affected brain regions. We show that self-complementary AAV2/9 (scAAV2/9) delivery in the adult rat cisterna magna allows a widespread but not homogenous transduction of the brain. Indeed, superficial regions, i.e., cortex, hippocampus, and cerebellum were more efficiently transduced than deeper regions, such as striatum, and substantia nigra. These data suggest that viral particles penetration from the cerebrospinal fluid (CSF) into the brain is a limiting factor. Interestingly, AAV2/9-2YF a rationally designed capsid mutant (affecting surface tyrosines) increased gene transfer efficiency approximately fivefold. Neurons, astrocytes, and oligodendrocytes, but not microglia, were transduced in varying proportions depending on the brain region and the type of capsid. Finally, after a single intracisternal injection of scAAV2/9-2YF using the NFκB-inducible promoter, KA treatment induced transgene expression in the hippocampus and cortex but not in the cerebellum, corresponding to the expression of the CD11b marker of microglial activation. These data support the use of disease-inducible vectors administered in the cisterna magna as a tool to characterize the brain pathology in systemic drug-induced or transgenic disease models. However, further improvements are required to enhance viral particles penetration into the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focused mainly on changes in the microtubule cytoskeleton in a transgenic mouse where beta-galactosidase fused to a truncated neurofilament subunit led to a decrease in neurofilament triplet protein expression and a loss in neurofilament assembly and abolished transport into neuronal processes in spinal cord and brain. Although all neurofilament subunits accumulated in neuronal cell bodies, our data suggest an increased solubility of all three subunits, rather than increased precipitation, and point to a perturbed filament assembly. In addition, reduced neurofilament phosphorylation may favor an increased filament degradation. The function of microtubules seemed largely unaffected, in that tubulin and microtubule-associated proteins (MAP) expression and their distribution were largely unchanged in transgenic animals. MAP1A was the only MAP with a reduced signal in spinal cord tissue, and differences in immunostaining in various brain regions corroborate a relationship between MAP1A and neurofilaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosa-associated lymphoid tissue 1 (MALT1) controls antigen receptor-mediated signalling to nuclear factor κB (NF-κB) through both its adaptor and protease function. Upon antigen stimulation, MALT1 forms a complex with BCL10 and CARMA1, which is essential for initial IκBα phosphorylation and NF-κB nuclear translocation. Parallel induction of MALT1 protease activity serves to inactivate negative regulators of NF-κB signalling, such as A20 and RELB. Here we demonstrate a key role for auto-proteolytic MALT1 cleavage in B- and T-cell receptor signalling. MALT1 cleavage occurred after Arginine 149, between the N-terminal death domain and the first immunoglobulin-like region, and did not affect its proteolytic activity. Jurkat T cells expressing an un-cleavable MALT1-R149A mutant showed unaltered initial IκBα phosphorylation and normal nuclear accumulation of NF-κB subunits. Nevertheless, MALT1 cleavage was required for optimal activation of NF-κB reporter genes and expression of the NF-κB targets IL-2 and CSF2. Transcriptome analysis confirmed that MALT1 cleavage after R149 was required to induce NF-κB transcriptional activity in Jurkat T cells. Collectively, these data demonstrate that auto-proteolytic MALT1 cleavage controls antigen receptor-induced expression of NF-κB target genes downstream of nuclear NF-κB accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Nuclear factor kappa B (NF-κB) transcription factors control many aspects of cell fate through induction of inflammatory, immune or survival molecules. We have identified two novel proteins, named receptor interacting protein (RIP)-4 and caspase recruitment domain (CARD) adaptor inducing interferon-β (Cardif), which activate NF-κB. Further, we have found that Cardif plays a prominent antiviral function. Antiviral innate immunity is mounted upon recognition by the host of virally associated structures like double-stranded (ds) RNA, which constitutes a viral replication product of many viruses within infected cells. dsRNA, depending on its subcellular localization, can be sensed by two separate arms of host defense. Firstly, Toll-like receptor (TLR)-3, a member of the type I transmembrane TLR family, recognizes endosomally-located dsRNA. Secondly, cytoplasmic dsRNA is detected by the recently identified RNA helicase retinoic acid inducible gene I (RIG-I). Triggering of TLR3- and RIG-I-dependent pathways results in the activation of the transcription factors NF-κB and Interferon regulatory factor (IRF)-3, which cooperatively transduce antiviral immune responses. We have demonstrated that RIP1, a kinase previously shown to be required for TNF signaling, transmits TLR3-dependent NF-κB activation. Further we have identified and characterized Cardif as an essential adaptor transmitting RIG-I-mediated antiviral responses, including activation of NF-κB and IRF3. In addition, we showed that Cardif is cleaved and inactivated by a serine protease of hepatitis C virus, and therefore may represent an attractive target for this virus to escape innate immune responses. RESUME Les facteurs de transcription "nuclear factor kappa B" (NF-κB) contrôlent divers aspects du devenir cellulaire à travers l'induction de molécules inflammatoires, immunitaires ou de survie. Nous avons identifié deux nouvelles protéines, nommées "receptor interacting protein" (RIP)-4 et "caspase recruitment domain (CARD) adaptor inducing interferon-β" (Cardif), qui activent NF-κB. En outre, nous avons trouvé que Cardif joue un rôle antiviral crucial. L'immunité innée antivirale s'établit au moment de la reconnaissance par l'hôte de structures virales, comme l'ARN double brin, qui constitue un produit de réplication de beaucoup de virus à l'intérieur de cellules infectées. L'ARN double brin, dépendant de sa localisation subcellulaire, peut être détecté par deux branches de défense distinctes. Premièrement, le récepteur transmembranaire "Toll-like" (TLR), TLR3, reconnaît l'ARN double brin lorsque localisé dans les endosomes. Deuxièmement, l'ARN double brin cytoplasmique est reconnu par l'ARN hélicase récemment décrite "retinoic acid inducible gene I" (RIG-I). Le déclenchement de voies dépendantes de TLR3 et RIG-I active les facteurs de transcription NF-κB et IRF3, qui coopèrent afin de transduire des réponses immunitaires antivirales. Nous avons démontré que RIP1, une kinase décrite précédemment dans le signalement du TNF, transmet l'activation de NF-κB dépendante de TLR3. De plus, nous avons identifié et caractérisé Cardif comme un adapteur essentiel transmettant les réponses antivirales médiées par RIG-I, qui incluent l'activation de NF-κB et IRF3. De surcroît, Cardif est clivé et inactivé par une sérine protéase du virus de l'hépatite C, et ainsi pourrait représenter une cible attractive pour ce virus afin d'échapper aux réponses immunitaires innées.