216 resultados para NEUROPEPTIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential α-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1-7); an α-helix (residues 8-18), a region incorporating a β-bend (residues 19-26) and the C-terminal portion (residues 27-37), that is characterized by bends between residues 28-30 and 33-34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an α-helix. Linked Articles This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholecystokinin (CCK) is a gut-brain peptide has been described to be able to induce mitosis according to recent studies. Additionally, conflicting data has been published on whether tumours of the central and peripheral nervous system in general, and gliomas in particular, express CCK receptors. In the present in vitro study we employed reverse transcription followed by the polymerase chain reaction (RT-PCR) to investigate whether mRNA for CCK-A and CCK-B receptors as well as CCK peptide itself is present in primary human gliomas and the U-87 MG GBM cell line. The data show that 14/14 (100%) of the primary gliomas exhibited mRNA expression for the CCK peptide gene and the B receptor including the U-87 MG cells, whereas, only 2/14 (14%) showed presence of the CCK-A receptor. The presence of CCK receptors together with CCK peptide expression itself suggests presence of an autocrine loop controlling glioma cell growth. In support of this conclusion, a neutralizing antibody against the CCK peptide exhibited a dose dependent inhibition of cell growth whereas, antagonists to CCK caused a dose depend inhibition of exogenous stimulated glioma cell growth in vitro, via the CCK-B receptor which is PKC activated. Assessment of apoptosis and proteasome activity were undertaken and we report that treatment with CCK antagonists decreased proteasome and increased caspase-3 activity. These data indicate that CCK peptide and CCK-B are abundant in human gliomas and they act to stimulate cell growth in an autocrine manner, primarily via the high affinity CCK-B receptor, which was blocked by antagonists to CCK, perhaps via apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides affect the activity of the myriad of neuronal circuits in the brain. They are under tight spatial and chemical control and the dynamics of their release and catabolism directly modify neuronal network activity. Understanding neuropeptide functioning requires approaches to determine their chemical and spatial heterogeneity within neural tissue, but most imaging techniques do not provide the complete information desired. To provide chemical information, most imaging techniques used to study the nervous system require preselection and labeling of the peptides of interest; however, mass spectrometry imaging (MSI) detects analytes across a broad mass range without the need to target a specific analyte. When used with matrix-assisted laser desorption/ionization (MALDI), MSI detects analytes in the mass range of neuropeptides. MALDI MSI simultaneously provides spatial and chemical information resulting in images that plot the spatial distributions of neuropeptides over the surface of a thin slice of neural tissue. Here a variety of approaches for neuropeptide characterization are developed. Specifically, several computational approaches are combined with MALDI MSI to create improved approaches that provide spatial distributions and neuropeptide characterizations. After successfully validating these MALDI MSI protocols, the methods are applied to characterize both known and unidentified neuropeptides from neural tissues. The methods are further adapted from tissue analysis to be able to perform tandem MS (MS/MS) imaging on neuronal cultures to enable the study of network formation. In addition, MALDI MSI has been carried out over the timecourse of nervous system regeneration in planarian flatworms resulting in the discovery of two novel neuropeptides that may be involved in planarian regeneration. In addition, several bioinformatic tools are developed to predict final neuropeptide structures and associated masses that can be compared to experimental MSI data in order to make assignments of neuropeptide identities. The integration of computational approaches into the experimental design of MALDI MSI has allowed improved instrument automation and enhanced data acquisition and analysis. These tools also make the methods versatile and adaptable to new sample types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mood disorders, including depression and anxiety, are among the most prevalent mental illnesses with high socioeconomic impact. Although the underlying mechanisms have not yet been clearly defined in the last decade the importance of the role of neuropeptides, including Galanin (GAL), and/or their receptors in the treatment of stress-related mood disorders is becoming increasingly apparent. GAL is involved in mood regulation, including depression-related and anxiety-like behaviors. Activation of GALR1 and GALR3 receptors results in a depression like behavior while stimulation of GALR2 receptor leads to anti-depressant-like effects. Moreover, GAL modulates 5-HT1A receptors (5-HT1AR), a key receptor in depression at autoreceptor and postsynaptic level in the brain. This interaction can in part be due to the existence of GALR1-5-HT1AR heteroreceptor complexes in discrete brain regions [1]. Not only GAL but also the N-terminal fragments like GAL(1-15) are active in the Central Nervous System [2, 3]. Recently, we described that GAL(1-15) induces strong depression-related and anxiogenic-like effects in rats, and these effects were significantly stronger than the ones induced by GAL [4]. The GALR1-GALR2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe (DR), areas rich in GAL(1-15) binding sites [5] were involved in these effects [4, 6] and demonstrated also in cellular models. In the present study, we have analyzed the ability of GAL(1-15) to modulate 5-HT1AR located at postjunctional sites and at the soma-dendritic level in rats. We have analyzed the effect of GAL(1-15) on the 5-HT1AR-mediated response in a behavioral test of depression and the involvement of the GALR2 in these effects. GAL(1-15) enhanced the antidepressant effects induced by the 5-HT1AR agonist 8-OH-DPAT in the forced swimming test [7]. These effects were stronger than the ones induced by GAL. The mechanism of this action involved interactions at the receptor level in the plasma membrane with changes also at the transcriptional level. Thus, GAL(1-15) affected the binding characteristics as well as the mRNA level of 5-HT1AR in the dorsal hippocampus and DR. GALR2 was involved in these effects, since the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions at the behavioral and receptor level [7]. Furthermore, the results on the proximity ligation assay (PLA) in this work suggest the existence of GALR1-GALR2-5-HT1AR heteroreceptor complexes since positive PLA were obtained for both GALR1-5-HT1AR and GALR2-5-HT1AR complexes in the DR and hippocampus. Moreover the studies on RN33B cells, where GALR1, GALR2 and 5-HT1AR exist [4], also showed PLA-positive clusters indicating the existence of GALR1-5-HT1AR and GALR2-5-HT1AR complexes in these cells [7]. In conclusion, our results indicate that GAL(1–15) enhances the antidepressant effects induced by the 5-HT1AR agonist 8-OH-DPAT probably acting on GALR1-GALR2-5-HT1AR heteroreceptor located at postjunctional sites and at the soma-dendritic level. The development of new drugs specifically targeting these heteroreceptor complexes may offer a novel strategy for treatment of depression. This work has been supported by Junta de Andalucia CVI646 1. Borroto-Escuela, D.O., et al., Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun, 2010. 393(4): p. 767-72. 2. Hedlund, P.B. and K. Fuxe, Galanin and 5-HT1A receptor interactions as an integrative mechanism in 5-HT neurotransmission in the brain. Ann N Y Acad Sci, 1996. 780: p. 193-212. 3. Diaz-Cabiale, Z., et al., Neurochemical modulation of central cardiovascular control: the integrative role of galanin. EXS, 2010. 102: p. 113-31. 4. Millon, C., et al., A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats. Int J Neuropsychopharmacol, 2015. 18(3). 5. Hedlund, P.B., N. Yanaihara, and K. Fuxe, Evidence for specific N-terminal galanin fragment binding sites in the rat brain. Eur J Pharmacol, 1992. 224(2-3): p. 203-5. 6. Borroto-Escuela, D.O., et al., Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex. Biochem Biophys Res Commun, 2014. 452(3): p. 347-53. 7. Millon, C., et al., Galanin (1-15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct, 2016.