896 resultados para Muscle tissue
Resumo:
The nutritional contribution of the dietary nitrogen, carbon and total dry matter supplied by fish meal (FM), soy protein isolate (SP) and corn gluten (CG) to the growth of Pacific white shrimp Litopenaeus vannamei was assessed by means of isotopic analyses. As SP and CG are ingredients derived from plants having different photosynthetic pathways which imprint specific carbon isotope values to plant tissues, their isotopic values were contrasting. FM is isotopically different to these plant meals with regards to both, carbon and nitrogen. Such natural isotopic differences were used to design experimental diets having contrasting isotopic signatures. Seven isoproteic (36% crude protein), isoenergetic (4.7 kcal g−1) diets were formulated; three diets consisted in isotopic controls manufactured with only one main ingredient supplying dietary nitrogen and carbon: 100% FM (diet 100F), 100% SP (diet 100S) and 100% CG (diet 100G). Four more diets were formulated with varying mixtures of these three ingredients, one included 33% of each ingredient on a dietary nitrogen basis (diet 33FSG) and the other three included a proportion 50:25:25 for each of the three ingredients (diets 50FSG, 50SGF and 50GFS). At the end of the bioassay there were no significant differences in growth rate in shrimps fed on the four mixed diets and diet 100F (k=0.215–0.224). Growth rates were significantly lower (k=0.163–0.201) in shrimps grown on diets containing only plant meals. Carbon and nitrogen stable isotope values (δ13C and δ15N) were measured in experimental diets and shrimp muscle tissue and results were incorporated into a three-source, two-isotope mixing model. The relative contributions of dietary nitrogen, carbon and total dry matter from FM, SP and CG to growth were statistically similar to the proportions established in most of the diets after correcting for the apparent digestibility coefficients of the ingredients. Dietary nitrogen available in diet 33FSG was incorporated in muscle tissue at proportions representing 24, 35 and 41% of the respective ingredients. Diet 50GSF contributed significantly higher amounts of dietary nitrogen from CG than from FM. When the level of dietary nitrogen derived from FM was increased in diet 50FSG, nutrient contributions were more comparable to the available dietary proportions as there was an incorporation of 44, 29 and 27% from FM, SP and CG, respectively. Nutritional contributions from SP were very consistent to the dietary proportions established in the experimental diets.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Molecular, 2016.
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.
Resumo:
Purpose Radiation therapy (RT) is often recommended in the treatment of pelvic cancers. Following RT, a high prevalence of pelvic floor dysfunctions (urinary incontinence, dyspareunia, and fecal incontinence) is reported. However, changes in pelvic floor muscles (PFMs) after RT remain unclear. The purpose of this review was to systematically document the effects of RT on the PFM structure and function in patients with cancer in the pelvic area. Methods An electronic literature search using Pubmed Central, CINAHL, Embase, and SCOPUS was performed from date of inception up to June 2014. The following keywords were used: radiotherapy, muscle tissue, and pelvic floor. Two reviewers selected the studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA). Out of the 369 articles screened, 13 met all eligibility criteria. The methodological quality was assessed using the QualSyst scoring system, and standardized mean differences were calculated. Results Thirteen studies fulfilled all inclusion criteria, from which four were of good methodological quality. One presented strong evidence that RT affects PFM structure in men treated for prostate cancer. Four presented high-level evidence that RT affects PFM function in patients treated for rectal cancer. Meta-analysis was not possible due to heterogeneity and lack of descriptive statistics. Conclusion There is some evidence that RT has detrimental impacts on both PFMs’ structure and function. Implications for cancer survivors A better understanding of muscle damage and dysfunction following RT treatment will improve pelvic floor rehabilitation and, potentially, prevention of its detrimental impacts.
Resumo:
Sarcocystis species are worldwide spread cyst-forming protozoa that can infect wild boar but little is known about the prevalence of these parasites. In this study we assessed the prevalence of Sarcocystis spp. infections in wild boars from northeastern Portugal, for which novel PCR testing assays targeting Sarcocystis genus, S. miescheriana and S. suihominis were implemented, and risk factors potentially associated with these infections were evaluated. Samples from muscle tissue, namely diaphragm (n = 102), oesophagus (n = 96) and heart (n = 101), were collected from a total of 103 wild boar hunted between October 2011 and February 2012. Diaphragm muscle was used for the PCR detection of Sarcocystis nucleic acids since a higher proportion of samples showed the presence of cysts during histological examination. PCR assay targeting Sarcocystis genus yielded a 73.8% infection rate, which indicate a high level of exposure to these protozoan parasites among wild boars. These samples showed to be positive with the S. miescheriana-specific PCR assay and no sample was positive with the S. suihominis-specific assay, suggesting that a single species infecting wild boar is circulating in Portugal. These results were confirmed by the partial sequencing of the 18S rRNA gene amplified from selected samples from different geographic regions. Adults, young adults and female wild boars were found to be more likely infected. Hunters have an important role in the life cycle of S. miescheriana since potentially infected viscera and carcasses can be left behind promoting the protozoan dissemination to the scavenging final hosts. If hunting dogs bite and ingest infected meat they can perpetuate the life cycle of Sarcocystis spp. spreading oocysts or sporocysts in the environment.
Resumo:
Purpose Radiation therapy (RT) is often recommended in the treatment of pelvic cancers. Following RT, a high prevalence of pelvic floor dysfunctions (urinary incontinence, dyspareunia, and fecal incontinence) is reported. However, changes in pelvic floor muscles (PFMs) after RT remain unclear. The purpose of this review was to systematically document the effects of RT on the PFM structure and function in patients with cancer in the pelvic area. Methods An electronic literature search using Pubmed Central, CINAHL, Embase, and SCOPUS was performed from date of inception up to June 2014. The following keywords were used: radiotherapy, muscle tissue, and pelvic floor. Two reviewers selected the studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA). Out of the 369 articles screened, 13 met all eligibility criteria. The methodological quality was assessed using the QualSyst scoring system, and standardized mean differences were calculated. Results Thirteen studies fulfilled all inclusion criteria, from which four were of good methodological quality. One presented strong evidence that RT affects PFM structure in men treated for prostate cancer. Four presented high-level evidence that RT affects PFM function in patients treated for rectal cancer. Meta-analysis was not possible due to heterogeneity and lack of descriptive statistics. Conclusion There is some evidence that RT has detrimental impacts on both PFMs’ structure and function. Implications for cancer survivors A better understanding of muscle damage and dysfunction following RT treatment will improve pelvic floor rehabilitation and, potentially, prevention of its detrimental impacts.
Resumo:
The myogenic differentiation 1 gene (MYOD1) has a key role in skeletal muscle differentiation and composition through its regulation of the expression of several muscle-specific genes. We first used a general linear mixed model approach to evaluate the association of MYOD1 expression levels on individual beef tenderness phenotypes. MYOD1 mRNA levels measured by quantitative polymerase chain reactions in 136 Nelore steers were significantly associated (P ? 0.01) with Warner?Bratzler shear force, measured on the longissimus dorsi muscle after 7 and 14 days of beef aging. Transcript abundance for the muscle regulatory gene MYOD1 was lower in animals with more tender beef. We also performed a coexpression network analysis using whole transcriptome sequence data generated from 30 samples of longissimus muscle tissue to identify genes that are potentially regulated by MYOD1. The effect of MYOD1 gene expression on beef tenderness may emerge from its function as an activator of muscle-specific gene transcription such as for the serum response factor (C-fos serum response element-binding transcription factor) gene (SRF), which determines muscle tissue development, composition, growth and maturation.
Resumo:
The present study was carried out to investigate contamination of heavy metals in 19 fish species from the Banan section of Chongqing in the Three Gorges, Yangtze River. The results showed that the mean concentrations of heavy metals were higher in intestine than muscle, except zinc in upper strata. In the fish inhabiting the upper strata, there were significant differences between mean concentrations of As, Cr, Cu and Hg in muscle and intestine (P <0.05). There were also significant differences between mean concentrations of Cr and Cu in muscle and intestine in the fish inhabiting middle strata. However, significant differences between mean concentrations of As, Cd, Hg, Pb and Zn were measured in fish inhabiting bottom strata in both intestine and muscle tissues (P <0.05). For the fish inhabiting different strata, the concentrations of As, Cd, Cr, Cu, Hg and Ph in muscle and intestine of the fish from bottom strata (BS) were higher than those in both upper strata (US) and middle strata (MS); whereas a higher concentration of Zn was measured in muscle and intestine from fish inhabiting upper strata. Mean metal concentrations were found to be higher in age 11 than those in age I in Coreius heterodon (2- and 1-year odl fish respectively). The overall results indicated that fish muscle in the Banan section were slightly contaminated by heavy metals, but did not exceed Chinese food standards.
Resumo:
Rationale: Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited.
Objective: We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state.
Methods and Results: We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft.
Conclusions: We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.
Resumo:
Membranes are dynamic structures that affect cell structure and function. Compositional changes ofmembranes have been shown with the application of a perturbation; however these are limited to whole tissue analysis. The purpose of this thesis was to compare the phospholipid (PL) fatty acid (FA) composition of rat whole muscle (Wm) to 1) purified and non-purified subsarcolemmal (SS) mitochondria in soleus, plantaris, and red gastrocnemius, and 2) sarcolemma, transverse-tubules, SS and intermyofibrillar (IMF) mitochondria fix)m whole hindlimb. The major findings were that 1) contamination significantly altered the PL FA composition of the SS mitochondrial membrane fraction, 2) Wm and SS mitochondria compositions differed between muscle types, and 3) Wm did not accurately reflect the PL FA composition of any isolated subcellular membranes, with each being unique from each other. As such, the relevancy of the trends reported in the literature of the effects of perturbations on Wm may be limited.
Resumo:
While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.