962 resultados para Muscle fibers
Resumo:
[EN] During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P<0.05), leg blood flow (+20%, 1.7 l/min, P<0.05), and leg O2 delivery (+20%, 0.3 l/min, P<0.05). No effects were observed on leg or systemic VO2. Leg O2 fractional extraction was decreased from 85+/-3 (control) to 78+/-4% (ATP) in the infused leg (P<0.05), while it remained unchanged in the left leg (84+/-2 and 83+/-2%; control and ATP; n=3). ATP infusion at maximal exercise increased leg vascular conductance by 17% (P<0.05), while leg blood flow tended to be elevated by 0.8 l/min (P=0.08). However, neither systemic nor leg peak VO2 values where enhanced due to a reduction of O2 extraction from 84+/-4 to 76+/-4%, in the control and ATP conditions, respectively (P<0.05). In summary, the VO2 of the skeletal muscles of the lower extremities is not enhanced by limb vasodilation at near-maximal or maximal exercise in humans. The fact that ATP infusion resulted in a reduction of O2 extraction across the exercising leg suggests a vasodilating effect of ATP on less-active muscle fibers and other noncontracting tissues and that under normal conditions these regions are under high vasoconstrictor influence to ensure the most efficient flow distribution of the available cardiac output to the most active muscle fibers of the exercising limb.
Resumo:
Die Funktion von Dystroglycan in der Entwicklung des zentralen Nervensystems Der DAG ist ein oligomerer Proteinkomplex, der in den Muskelfasern die extrazelluläre Matrix mit dem Zytoskelett verbindet und dadurch der Muskulatur die mechanische Stabilität bei der Kontraktion verleiht. Mutationen des DAG sind die genetische Grundlage für verschiedene Formen von muskulären Dystrophien. Muskuläre Dystrophien sind Krankheiten, die neben einer Degeneration der Muskulatur auch verschiedene ZNS-Defekte aufweisen. Die Funktion des DAG im ZNS ist bisher unbekannt. Um seine Funktion im ZNS zu analysieren, wurde Huhn-Dystroglycan, eine zentrale Komponente des DAG, kloniert. Dystroglycan besteht aus dem extrazellulären Matrixprotein alpha-Dystroglycan und dem transmembranen beta-Dystroglycan. Beide Proteine werden vom selben Gen codiert und posttranslational gespalten. Die Huhn-Dystroglycan-Sequenz ist sehr homolog zu anderen Spezies. Antikörper hergestellt gegen die Interaktionsdomänen von alpha- und beta-Dystroglycan, wurden verwendet um die Interaktion von Dystroglycan selektiv an der Grenzfläche zwischen Gliazellendfüßen und Basallamina in der Retina zu stören. Die Antikörper wurden in vivo intravitreal in Augen von Hühnerembryoanen der Stadien E6 bis E10 injiziert. Die Injektion der Antikörper und entsprechender Fab-Fragmente führten zu schweren Veränderungen in der Retina, unter anderem Hyperproliferation, Auflösung der radialen Struktur der neuroepithelialen Zellen und einer veränderten Schichtung. Diese Ergebnisse deuten darauf hin, daß der DAG am Kontakt der radiären Glizellen zur Basalmembran beteiligt sind.
Resumo:
Dystrophin is a subsarcolemmal protein critical for the integrity of muscle fibers by linking the actin cytoskeleton to the extracellular matrix via the dystroglycan complex. It is reported that dystroglycans are also localized in the skin, at dermal-epidermal junction. Here we show that epidermal melanocytes express dystrophin at the interface with the basement membrane. The full-length muscle isoform mDp427 was clearly detectable in epidermis and in melanocyte cultures as assessed by RNA and western blot analysis. Dystrophin was absent in Duchenne Muscular Dystrophy (DMD) patients melanocytes, and the ultrastructural analysis revealed mitochondrial alterations, similar to those occurring in myoblasts from the same patients. Interestingly, mitochondrial dysfunction of DMD melanocytes reflected the alterations identified in dystrophin-deficient muscle cells. In fact, mitochondria of melanocytes from DMD patients accumulated tetramethylrhodamine methyl ester but, on the contrary of control donor, mitochondria of DMD patients readily depolarized upon the addition of oligomycin, suggesting either that they are maintaining the membrane potential at the expense of glycolytic ATP, or that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Melanocyte cultures can be easily obtained by conventional skin biopsies, less invasive procedure than muscular biopsy, so that they may represent an alternative cellular model to myoblast for studying and monitoring dystrophinopathies also in response to pharmacological treatments.
Resumo:
Background Retraction, atrophy and fatty infiltration are signs subsequent to chronic rotator cuff tendon tears. They are associated with an increased pennation angle and a shortening of the muscle fibers in series. These deleterious changes of the muscular architecture are not reversible with current repair techniques and are the main factors for failed rotator cuff tendon repair. Whereas fast stretching of the retracted musculotendinous unit results in proliferation of non-contractile fibrous tissue, slow stretching may lead to muscle regeneration in terms of sarcomerogenesis. To slowly stretch the retracted musculotendinous unit in a sheep model, two here described tensioning devices have been developed and mounted on the scapular spine of the sheep using an expandable threaded rod, which has been interposed between the retracted tendon end and the original insertion site at the humeral head. Traction is transmitted in line with the musculotendinous unit by sutures knotted on the expandable threaded rod. The threaded rod of the tensioner is driven within the body through a rotating axis, which enters the body on the opposite side. The tendon end, which was previously released (16 weeks prior) from its insertion site with a bone chip, was elongated with a velocity of 1 mm/day. Results After several steps of technical improvements, the tensioner proved to be capable of actively stretching the retracted and degenerated muscle back to the original length and to withstand the external forces acting on it. Conclusion This technical report describes the experimental technique for continuous elongation of the musculotendinous unit and reversion of the length of chronically shortened muscle.
Resumo:
To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.
Resumo:
Alterations in nitric oxide synthase (NOS) are implicated in ischemia and ischemia-reperfusion injury. Changes in the 3 NOS isoforms in human skeletal muscle subjected to acute ischemia and reperfusion were studied. Muscle biopsies were taken from patients undergoing total knee replacement. Distribution of the specific NOS isoforms within muscle sections was studied using immunohistochemistry. NOS mRNA levels were measured using real-time reverse transcription-polymerase chain reaction and protein levels studied using Western blotting. NOS activity was also assessed using the citrulline assay. All 3 NOS isoforms were found in muscle sections associated with muscle fibers and microvessels. In muscle subjected to acute ischemia and reperfusion, NOS I/neuronal NOS mRNA and protein were elevated during reperfusion. NOS III/endothelial NOS was also upregulated at the protein level during reperfusion. No changes in NOS II/inducible NOS expression or NOS activity occurred. In conclusion, alterations in NOS I and III (neuronal NOS and endothelial NOS) at different levels occurred after acute ischemia and reperfusion in human skeletal muscle; however, this did not result in increased NOS activity. In the development of therapeutic agents based on manipulation of the NO pathway, targeting the appropriate NOS isoenzymes may be important.
Resumo:
FGFRL1 is a recently discovered member of the fibroblast growth factor receptor family that is lacking the intracellular tyrosine kinase domain. To elucidate the function of the novel receptor, we created mice with a targeted disruption of the Fgfrl1 gene. These mice develop normally until term, but die within a few minutes after birth due to respiratory failure. The respiratory problems are explained by a significant reduction in the size of the diaphragm muscle, which is not sufficient to inflate the lungs after birth. The remaining portion of the diaphragm muscle appears to be well developed and innervated. It consists of differentiated myofibers with nuclei at the periphery. Fast and slow muscle fibers occur in normal proportions. The myogenic regulatory factors MyoD, Myf5, myogenin and Mrf4 and the myocyte enhancer factors Mef2A, Mef2B, Mef2C and Mef2D are expressed at normal levels. Experiments with a cell culture model involving C2C12 myoblasts show that Fgfrl1 is expressed during the late stages of myotube formation. Other skeletal muscles do not appear to be affected in the Fgfrl1 deficient mice. Thus, Fgfrl1 plays a critical role in the development of the diaphragm.
Resumo:
The generation of rhythmic electrical activity is a prominent feature of spinal cord circuits that is used for locomotion and also for circuit refinement during development. The mechanisms involved in rhythm generation in spinal cord networks are not fully understood. It is for example not known whether spinal cord rhythms are driven by pacemaker neurons and if yes, which neurons are involved in this function. We studied the mechanisms involved in rhythm generation in slice cultures from fetal rats that were grown on multielectrode arrays (MEAs). We combined multisite extracellular recordings from the MEA electrodes with intracellular patch clamp recordings from single neurons. We found that spatially restricted oscillations of activity appeared in most of the cultures spontaneously. Such activity was based on intrinsic activity in a percentage of the neurons that could activate the spinal networks through recurrent excitation. The local oscillator networks critically involved NMDA, AMPA and GABA / glycine receptors at subsequent phases of the oscillation cycle. Intrinsic spiking in individual neurons (in the absence of functional synaptic coupling) was based on persistent sodium currents. Intrinsic firing as well as persistent sodium currents were increased by 5-HT through 5-HT2 receptors. Comparing neuronal activity to muscle activity in co-cultures of spinal cord slices with muscle fibers we found that a percentage of the intrinsically spiking neurons were motoneurons. These motoneurons were electrically coupled among each other and they could drive the spinal networks through cholinergic recurrent excitation. These findings open the possibility that during development rhythmic activity in motoneurons is not only involved in circuit refinement downstream at the neuromuscular endplates but also upstream at the level of spinal cord circuits.
Resumo:
PURPOSE OF REVIEW To provide an overview on the available clinical and pathological factors in high-risk nonmuscle invasive bladder cancer (NMIBC) patients that help to approximate the risk of progression to muscle invasion and identify 'the' patients requiring timely cystectomy. The value of a high-quality transurethral tumor resection is pointed out. Outcomes following radical cystectomy are compared with a primarily bladder preserving strategy. RECENT FINDINGS Carcinoma in situ within the prostatic urethra of NMIBC patients impacts on patient's outcome. Therefore, biopsies taken from the prostatic urethra improve the initial tumor staging accuracy. Lamina propria substaging may provide more detailed prognostic information. Lympho-vascular invasion within the transurethral resection specimen may help to detect patients who benefit from timely cystectomy. Recent findings from patients undergoing radical cystectomy including super-extended lymphadenectomy for clinically NMIBC confirm the substantial rate (25%) of tumor understaging. The fact that almost 10% were found to harbor lymph node metastases underlines the necessity to perform a meticulous lymphadenectomy in NMIBC patients undergoing radical cystectomy. SUMMARY High-quality transurethral bladder tumor resection including underlying muscle fibers is of utmost importance. Nevertheless, tumor understaging remains an issue of concern and warrants the value of a second transurethral resection in high-risk NMIBC patients. There is a persisting lack of rigid therapeutic recommendations in patients with high-risk NMIBC. Instead, treatment strategy is based on individual risk factors. However, irrespective of initial treatment strategy, there is a subgroup of high-risk NMIBC patients with progressive disease, leading almost inevitably to death.
Resumo:
Introduction: Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. Methods: MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched normal controls. Results: MC patients exhibited increased early supernormality, but treatment with sodium channel blockers prevented this. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. Discussion: MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that in dominant MC the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. © 2013 Wiley Periodicals, Inc.
Resumo:
The formation of skeletal muscle during vertebrate development involves the induction of mesoderm and subsequent generation of myoblasts that ultimately differentiate into mature muscles. The recent identification of a group of myogenic regulators that can convert fibroblasts to myoblasts has contributed to our understanding of the molecular events that underlie the establishment of the skeletal muscle phenotype. Members of this group of myogenic regulators share a helix-loop-helix (HLH) motif that mediates DNA binding. The myogenic HLH proteins bind to the consensus sequence CANNTG, referred to as an E-box, and activate muscle-specific transcription. In addition to E-boxes, other motifs, such as the MEF-2 binding site, have been shown to mediate muscle-specific transcription. The myogenic HLH proteins are expressed in the myogenic precursors in somites and limb buds, and in differentiated muscle fibers during embryogenesis, consistent with their roles as regulators for muscle development. The myogenic HLH proteins appear to auto-activate their own and cross-activate one another's expression in cultured cells. Myogenin is one of the myogenic HLH proteins and likely the regulator for terminal muscle differentiation. Myogenin is a common target of diverse regulatory pathways. To search for upstream regulators of myogenin, we studied regulation of myogenin transcription during mouse embryogenesis. We showed that the myogenin promoter contains a binding site for MEF-2, which can mediate indirectly the autoregulation of myogenin transcription. We found that a transgene under the control of a 1.5 kb 5$\sp\prime$ flanking sequence can recapitulate the temporal and spatial expression pattern of the endogenous myogenin gene during mouse embryogenesis. By tracing embryonic cells that activate myogenin-lacZ during embryogenesis, we found no evidence that lacZ was expressed in myogenic precursors migrating from somites to limb buds, suggesting the existence of regulators other than myogenic HLH proteins that can maintain cells in the myogenic lineage. Mutations of an E-box and a MEF-2 site in the myogenin promoter suppressed transcription in subsets of myogenic precursors in mouse embryos. These results suggest that myogenic HLH proteins and MEF-2 participate in separable regulatory pathways controlling myogenin transcription and provide evidence for positional regulation of myogenic regulators in the embryo. ^
Resumo:
The myogenin gene encodes an evolutionarily conserved basic helix-loop-helix transcription factor that regulates the expression of skeletal muscle-specific genes and its homozygous deletion results in mice who die of respiratory failure at birth. The histology of skeletal muscle in the myogenin null mice is reminiscent of that found in some severe congenital myopathy patients, many of whom also die of respiratory complications and provides the rationale that an aberrant human myogenin (myf4) coding region could be associated with some congenital myopathy conditions.^ With PCR, we found similarly sized amplimers for the three exons of the myogenin gene in 37 patient and 40 control samples. In contrast to the GeneBank sequence for human myogenin, we report several differences in flanking and coding regions plus an additional 659 and 498 bps in the first and second introns, respectively, in all patients and controls. We also find a novel (CA)-dinucleotide repeat in the second intron. No causative mutations were detected in the myogenin coding regions of genomic DNA from patients with severe congenital myopathy.^ Severe congenital myopathies in humans are often associated with respiratory complications and pulmonary hypoplasia. We have employed the myogenin null mouse, which lacks normal development of skeletal muscle fibers as a genetically defined severe congenital myopathy mouse model to evaluate the effect of absent fetal breathing movement on pulmonary development.^ Significant differences are observed at embryonic days E14, E17 and E20 of lung:body weight, total DNA and histologically, suggesting that the myogenin null lungs are hypoplastic. RT-PCR, in-situ immunofluorescence and EM reveal pneumocyte type II differentiation in both null and wild lungs as early as E14. However, at E14, myogenin null lungs have decreased BrdU incorporation while E17 through term, augmented cell death is detected in the myogenin null lungs, not seen in wild littermates. Absent mechanical forces appear to impair normal growth, but not maturation, of the developing lungs in myogenin null mouse.^ These investigations provide the basis for delineating the DNA sequence of the myogenin gene and and highlight the importance of skeletal muscle development in utero for normal lung organogenesis. My observation of no mutations within the coding regions of the human myogenin gene in DNA from patients with severe congenital myopathy do not support any association with this condition. ^
Resumo:
The loss of skeletal muscle mass is believed to be the dominant reason for reduced strength in aging humans. The purpose of this investigation was to gain some information as to why skeletal muscles lose mass as we age. Since nervous system innervation is essential for skeletal muscle fiber viability, incomplete regional reinnervation during normal synaptic junction turnover has been hypothesized to result in selective muscle fiber loss. Examined here was the age-related association in skeletal muscle between atrophy and the expression of mRNAs encoding the γ- and ϵ-subunits of the nicotinic acetylcholine receptor, myogenin, and muscle specific receptor kinase (MuSK). Gastrocnemius and biceps brachii muscles were collected from young (2 month), adult (18 month), and old (31 month) Fischer 344 cross brown Norway F 1 male rats. In the gastrocnemius, muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels. In contrast, the biceps brachii muscle in the same animals exhibited neither atrophy nor a change in acetylcholine receptor γ-subunit, myogenin, or MuSK mRNA levels. Expression of the acetylcholine receptor ϵ-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Since acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels are upregulated in surgically denervated skeletal muscles of young rats while expression of the acetylcholine receptor ϵ-subunit does not change, the findings of the current investigation suggest that a select fiber population within atrophied skeletal muscles of old rats may be in a denervated-like state. I speculate that increases in γ-subunit, myogenin, and MuSK mRNA levels in atrophied muscles of old rats are compensatory responses to nerve terminal retraction. Indeed, a prolongation of denervation in these muscle fibers would subsequently result in their atrophy and death, ultimately leading to a decline in the number of force generating elements present in the muscle. ^
Resumo:
The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.
Resumo:
INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.