983 resultados para Multiple datasets
Resumo:
Current conceptualizations of organizational processes consider them as internally optimized yet static systems. Still, turbulences in the contextual environment of a firm often lead to adaptation requirements that these processes are unable to fulfil. Based on a multiple case study of the core processes of two large organizations, we offer an extended conceptualisation of business processes as complex adaptive systems. This conceptualization can enable firms to optimise business processes by analysing operations in different contexts and by examining the complex interaction between external, contextual elements and internal agent schemata. From this analysis, we discuss how information technology can play a vital goal in achieving this goal by providing discovery, analysis, and automation support. We detail implications for research and practice.
Resumo:
Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, β-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with β-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with β-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with β-catenin and E-cadherin from a higher molecular weight complex (~500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, β-catenin or E-cadherin, which were predominantly in a larger molecular weight complex (~2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased β-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and β-catenin during trafficking to the plasma membrane.
Resumo:
Sequence data often have competing signals that are detected by network programs or Lento plots. Such data can be formed by generating sequences on more than one tree, and combining the results, a mixture model. We report that with such mixture models, the estimates of edge (branch) lengths from maximum likelihood (ML) methods that assume a single tree are biased. Based on the observed number of competing signals in real data, such a bias of ML is expected to occur frequently. Because network methods can recover competing signals more accurately, there is a need for ML methods allowing a network. A fundamental problem is that mixture models can have more parameters than can be recovered from the data, so that some mixtures are not, in principle, identifiable. We recommend that network programs be incorporated into best practice analysis, along with ML and Bayesian trees.
Resumo:
Milk proteins are susceptible to chemical changes during processing and storage. We used proteomic tools to analyse bovine αS1-casein in UHT milk. 2-D gels of freshly processed milk αS1-casein was presented as five or more spots due to genetic polymorphism and variable phosphorylation. MS analysis after phosphopeptide enrichment allowed discrimination between phosphorylation states and genetic variants. We identified a new alternatively-spliced isoform with a deletion of exon 17, producing a new C-terminal sequence, K164SQVNSEGLHSYGL177, with a novel phosphorylation site at S174. Storage of UHT milk at elevated temperatures produced additional, more acidic αS1-casein spots on the gels and decreased the resolution of minor forms. MS analysis indicated that non-enzymatic deamidation and loss of the N-terminal dipeptide were the major contributors to the changing spot pattern. These results highlight the important role of storage temperature in the stability of milk proteins and the utility of proteomic techniques for analysis of proteins in food.
Resumo:
The potential of multiple distribution static synchronous compensators (DSTATCOMs) to improve the voltage profile of radial distribution networks has been reported in the literature by few authors. However, the operation of multiple DSTATCOMs across a distribution feeder may introduce control interactions and/or voltage instability. This study proposes a control scheme that alleviates interactions among controllers and enhances proper reactive power sharing among DSTATCOMs. A generalised mathematical model is presented to analyse the interactions among any number of DSTATCOMs in the network. The criterion for controller design is developed by conducting eigenvalue analysis on this mathematical model. The proposed control scheme is tested in time domain on a sample radial distribution feeder installed with multiple DSTATCOMs and test results are presented.
Resumo:
Background Cohort studies can provide valuable evidence of cause and effect relationships but are subject to loss of participants over time, limiting the validity of findings. Computerised record linkage offers a passive and ongoing method of obtaining health outcomes from existing routinely collected data sources. However, the quality of record linkage is reliant upon the availability and accuracy of common identifying variables. We sought to develop and validate a method for linking a cohort study to a state-wide hospital admissions dataset with limited availability of unique identifying variables. Methods A sample of 2000 participants from a cohort study (n = 41 514) was linked to a state-wide hospitalisations dataset in Victoria, Australia using the national health insurance (Medicare) number and demographic data as identifying variables. Availability of the health insurance number was limited in both datasets; therefore linkage was undertaken both with and without use of this number and agreement tested between both algorithms. Sensitivity was calculated for a sub-sample of 101 participants with a hospital admission confirmed by medical record review. Results Of the 2000 study participants, 85% were found to have a record in the hospitalisations dataset when the national health insurance number and sex were used as linkage variables and 92% when demographic details only were used. When agreement between the two methods was tested the disagreement fraction was 9%, mainly due to "false positive" links when demographic details only were used. A final algorithm that used multiple combinations of identifying variables resulted in a match proportion of 87%. Sensitivity of this final linkage was 95%. Conclusions High quality record linkage of cohort data with a hospitalisations dataset that has limited identifiers can be achieved using combinations of a national health insurance number and demographic data as identifying variables.
Resumo:
We examined the structure and extent of genetic diversity in intrahost populations of Ross River virus (RRV) in samples from six human patients, focusing on the nonstructural (nsP3) and structural (E2) protein genes. Strikingly, although the samples were collected from contrasting ecological settings 3,000 kilometers apart in Australia, we observed multiple viral lineages in four of the six individuals, which is indicative of widespread mixed infections. In addition, a comparison with previously published RRV sequences revealed that these distinct lineages have been in circulation for at least 5 years, and we were able to document their long-term persistence over extensive geographical distances
Resumo:
There is an increased interested in Uninhabited Aerial Vehicle (UAV) operations and research into advanced methods for commanding and controlling multiple heterogeneous UAVs. Research into areas of supervisory control has rapidly increased. Past research has investigated various approaches of autonomous control and operator limitation to improve mission commanders' Situation Awareness (SA) and cognitive workload. The aim of this paper is to address this challenge through a visualisation framework of UAV information constructed from Information Abstraction (IA). This paper presents the concept and process of IA, and the visualisation framework (constructed using IA), the concept associated with the Level Of Detail (LOD) indexing method, the visualisation of an example of the framework. Experiments will test the hypothesis that, the operator will be able to achieve increased SA and reduced cognitive load with the proposed framework.
Resumo:
Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
Our aim is to develop a set of leading performance indicators to enable managers of large projects to forecast during project execution how various stakeholders will perceive success months or even years into the operation of the output. Large projects have many stakeholders who have different objectives for the project, its output, and the business objectives they will deliver. The output of a large project may have a lifetime that lasts for years, or even decades, and ultimate impacts that go beyond its immediate operation. How different stakeholders perceive success can change with time, and so the project manager needs leading performance indicators that go beyond the traditional triple constraint to forecast how key stakeholders will perceive success months or even years later. In this article, we develop a model for project success that identifies how project stakeholders might perceive success in the months and years following a project. We identify success or failure factors that will facilitate or mitigate against achievement of those success criteria, and a set of potential leading performance indicators that forecast how stakeholders will perceive success during the life of the project's output. We conducted a scale development study with 152 managers of large projects and identified two project success factor scales and seven stakeholder satisfaction scales that can be used by project managers to predict stakeholder satisfaction on projects and so may be used by the managers of large projects for the basis of project control.
Resumo:
In this paper, we highlight the existence of multi-founder firms, which were founded by multiple individuals (with no family connections) who are still actively involved in the firm as directors and/or managers. These firms provide a unique setting to shed further light on the net valuation effects of founder involvement. In particular, multi-founder firms provide us with the opportunity to examine the benefits and costs to shareholders of multiple founders involved as directors, CEOs and managers in the same firm. Our analysis indicates that multi-founder firms are more valuable than all other types of firms, including single-founder firms and family firms, with the valuation premium positively related to the number of founders involved in the firm. Further analysis confirms that this valuation premium is linked to the direct involvement of the multiple founders as directors and CEOs. However, further founder involvement in vice president positions has a negative relationship with firm value.