653 resultados para Multifocal contact lens
Resumo:
Purpose - To investigate the ability of pharmacy staff in the United Kingdom (UK) to diagnose and treat dry eye. Methods - A mystery shopper technique to simulate a patient with presumed dry eye was used in 50 pharmacy practices in major towns and cities across the UK. Pharmacies were unaware of their involvement in the study. With the exception of a predetermined opening statement to initiate the consultation, no further information was volunteered. Questions asked, diagnoses given, management strategy advised and staff type was recorded immediately after the consultation. Results - The mean number of questions was 4.5 (SD 1.7; range 1–10). The most common question was the duration of symptoms (56%) and the least common was whether the patient had a history of headaches (2%). All pharmacy staff gave a diagnosis, but the majority were incorrect (58%), with only 42% correctly identifying dry eye. Treatment was advised by 92% of pharmacy staff, with the remaining 8% advising referral directly to the patient's GP or optometrist. Dry eye treatments involved topical ocular lubrication via eye drops (90%) and lipid based sprays (10%). However, only 10% gave administration advice, 10% gave dosage advice, 9% asked about contact lens wear, and none offered follow up although 15% also advised GP or optometrist referral. Conclusions - There is a need for improved ophthalmological training amongst pharmacists and pharmacy staff and establishment of cross referral relationships between pharmacies and optometry practices.
Resumo:
Purpose. To review the evolution in ocular temperature measurement during the last century and examine the advantages and applications of the latest noncontact techniques. The characteristics and source of ocular surface temperature are also discussed. Methods. The literature was reviewed with regard to progress in human thermometry techniques, the parallel development in ocular temperature measurement, the current use of infrared imaging, and the applications of ocular thermography. Results. It is widely acknowledged that the ability to measure ocular temperature accurately will increase the understanding of ocular physiology. There is a characteristic thermal profile across the anterior eye, in which the central area appears coolest. Ocular surface temperature is affected by many factors, including inflammation. In thermometry of the human eye, contact techniques have largely been superseded by infrared imaging, providing a noninvasive and potentially more accurate method of temperature measurement. Ocular thermography requires high resolution and frame rate: features found in the latest generation of cameras. Applications have included dry eye, contact lens wear, corneal sensitivity, and refractive surgery. Conclusions. Interest in the temperature of the eye spans almost 130 years. It has been an area of research largely driven by prevailing technology. Current instrumentation offers the potential to measure ocular surface temperature with more accuracy, resolution, and speed than previously possible. The use of dynamic ocular thermography offers great opportunities for monitoring the temperature of the anterior eye. © 2005 Contact Lens Association of Ophthalmologists, Inc.
Resumo:
Aim: To examine the academic literature on the grading of corneal transparency and to assess the potential use of objective image analysis. Method: Reference databases of academic literature were searched and relevant manuscripts reviewed. Annunziato, Efron (Millennium Edition) and Vistakon-Synoptik corneal oedema grading scale images were analysed objectively for relative intensity, edges detected, variation in intensity and maximum intensity. In addition, corneal oedema was induced in one subject using a low oxygen transmissibility (Dk/t) hydrogel contact lens worn for 3 hours under a light eye patch. Recovery from oedema was monitored over time using ultrasound pachymetry, high and low contrast visual acuity measures, bulbar hyperaemia grading and transparency image analysis of the test and control eyes. Results: Several methods for assessing corneal transparency are described in the academic literature, but none have gained widespread in clinical practice. The change in objective image analysis with printed scale grade was best described by quadratic parametric or sigmoid 3-parameter functions. ‘Pupil image scales’ (Annunziato and Vistakon-Synoptik) were best correlated to average intensity; however, the corneal section scale (Efron) was strongly correlated to variations in intensity. As expected, patching an eye wearing a low Dk/t hydrogel contact lens caused a significant (F=119.2, P<0.001) 14.3% increase in corneal thickness, which gradually recovered under open eye conditions. Corneal section image analysis was the most affected parameter and intensity variation across the slit width, in isolation, was the strongest correlate, accounting for 85.8% of the variance with time following patching, and 88.7% of the variance with corneal thickness. Conclusion: Corneal oedema is best determined objectively by the intensity variation across the width of a corneal section. This can be easily measured using a slit-lamp camera connected to a computer. Oedema due to soft contact lens wear is not easily determined over the pupil area by sclerotic scatter illumination techniques.
Resumo:
Purpose: Autofluorescence of ultraviolet (UV) light has been shown to occur in localised areas of the bulbar conjunctiva, which map to active cellular changes due to UV and environmental exposure. This study examined the presence of conjunctival UV autofluorescence in eye care practitioners (ECPs) across Europe and the Middle East and its associated risk factors. Method: Images were captured of 307 ECPs right eyes in the Czech Republic, Germany, Greece, Kuwait, Netherlands, Sweden, Switzerland, United Arab Emirates and the United Kingdom using a Nikon D100 camera and dual flash units through UV filters. UV autofluorescence was outlined using ImageJ software and the nasal and temporal area quantified. Subjects were required to complete a questionnaire on their demographics and lifestyle including general exposure to UV and refractive correction. Results: Average age of the subjects was 38.5±12.2 years (range 19-68) and 39.7% were male. Sixty-two percent of eyes had some conjunctival damage as indicated by UV autofluorescence. The average area of damage was higher (p=0.005) nasally (2.95±4.52mm2) than temporally (2.19±4.17mm2). The area of UV damage was not related to age (r=0.03, p=0.674), gender (p=0.194), self-reported sun exposure lifestyle (p>0.05), geographical location (p=0174), sunglasses use (p>0.05) or UV-blocking contact lens use (p>0.05), although it was higher in those wearing contact lenses with minimal UV-blocking and no spectacles (p=0.015). The area of UV damage was also less nasally in those who wore contact lenses and spectacles compared to those with no refractive correction use (p=0.011 nasal; p=0.958 temporal). Conclusion: UV conjunctival damage is common even in Europe, Kuwait and UAE, and among ECPs. The area of damage appears to be linked with the use of refractive correction, with greater damage nasally than temporally which may be explained by the peripheral light focusing effect.
Microwave decontamination of eyelid warming devices for the treatment of meibomian gland dysfunction
Resumo:
PURPOSE: The role of bacteria in meibomian gland dysfunction is unclear, yet contamination of compresses used as treatment may exacerbate this condition. This study therefore determined the effect of heating on bacteria on two forms of compress. METHODS: Cotton flannels and MGDRx EyeBags (eyebags) were inoculated by adding experimental inoculum (Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa; one species for each set of 3 eyebags and flannels). One of each were then randomised in to 3 groups: no heating (control); therapeutic (47.4±0.7°C); or sanitisation (68±1.1°C). After treatment, bacteria cell numbers were calculated. The experiment was repeated in triplicate. RESULTS: There was a statistically significant difference between each treatment with the eyebag for S. aureus (control=7.15±0.11logC/ml, therapeutic heating=5.24±0.59logC/ml, sanitisation heating=3.48±1.43logC/ml; P<0.001) and S. pyogenes (7.36±0.13, 5.73±0.26, 4.75±0.54; P<0.001). P. aeruginosa also showed a significant reduction (P<0.001) from control (6.39±0.34) to therapeutic (0.33±0.26) and sanitisation (0.33±0.21), but the latter were similar (P=1.000). For the flannels, there was significant difference between each treatment for S. aureus (6.89±0.46, 3.96±1.76, 0.42±0.90; P<0.001). For S. pyogenes, there was a significant reduction (P<0.001) from control (7.51±0.10) to therapeutic (5.91±0.62) and sanitisation (5.18±0.8), but the latter were similar (P=0.07). For P. aeruginosa, there was a significant difference (P<0.001) from control (7.15±0.36) to sanitisation (5.83±0.44); but not to therapeutic (6.84±0.31) temperatures (P=0.07). CONCLUSIONS: Therapeutic heating produces a significant reduction in bacteria on the eyebags, but only sanitisation heating appears effective for flannels. However, patients should be advised to heat the eyebag to sanitisation temperatures on initial use.
Resumo:
Whereas there are numerous reported ocular side effects from systemic sulpha medication, most are rare and reversible, with myopia being the most common reaction observed. A case report is presented of sudden bilateral onset of -1.0 DS of myopia (from -3.0 to -4.0 DS) in a young adult female following the addition of a sulphonamide (sulphasalazine) to oral non-steroidal anti-inflammatory treatment (meloxicam) for rheumatoid arthritis. The myopia regressed to -3.50 DS after 2 weeks when all medication was withdrawn and stabilised at this level when subsequent treatment was resumed after 8 weeks with the non-steroidal anti-inflammatory drug celecoxib. The case indicates that account needs to be taken of the possibility that relatively modest myopic shifts encountered in young adult contact lens wearers may be associated with concomitant systemic medication. © 2003 The College of Optometrists.
Resumo:
Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This time of year we look back at the year that has passed and make plans for the next year. I like to reflect on things that I have learnt and people that I have met, especially those who facilitated that learning. In 2009 I went to various conferences, The BCLA conference in Manchester, The Romanian Optical Society meeting in Brasov, Transylvania (where the university is actually on Vlad Tepes Street), The European Council for Optometry and Optics (ECOO) in Brno, Czech Republic, The American Academy of Optometry (AAO) in Orlando USA, The International Association of Contact Lens Educators (IACLE) meeting in Tianjin China and finally The Vereinigung Deutscher Contactlinsen-Spezialisten (VDCO) meeting in Jena. All were interesting places and thoroughly all were enjoyable conferences with their own highlights but I wanted to focus on Jena and one person I met there and his inspirational search for knowledge and the contributions he made in the field of contact lenses. Jena itself is a fascinating place and should be on the ‘must visit’ list of anyone involved in eye care. It is the birth place of Carl Zeiss of course and where he started his company. It is also the birth place of Ernst Abbe (physicist and optometrist and expert lens maker), and Otto Schott (chemist and technologist who made high quality glass. There are many road signs bearing witness to these famous pioneers. The optical museum is worth spending a few hours looking around too. I was invited to speak at the VDCO at the kind invitation from colleagues at the Jena School of Optometry, Professor Wolfgang Sickenberger and Professor Sebastian Marx. At this meeting I met 87-year-old Willi KAUE who was being awarded the Adolf Wilhelm Müller-Welt prize by the VDCO for contribution to contact lenses over his 60-year career. At the age of 15 Willi Kaue took up an apprenticeship to become an Optician in Germany in 1937. At this time he first heard about the scleral glass lenses made by the Carl Zeiss Company in Jena. This started his lifelong fascination which was to become his passion but not yet his career. During the war he was enlisted into military service but immediately after was back to his former career. In 1950 Willi corrected his own 3.5 dioptres of myopia with a plastic scleral lens. His fascination strengthened as for the first time he himself could experience a wider field of view than his spectacles gave him, less aberrations and less retinal minification. He also appreciated the fact that contact lenses did not cause pressure on the nose or ears and did not slide down his nose plus remained optically centred with his eye movements. He decided that form now on he would make fitting contact lenses his career. He travelled to London to learn more about contact lenses and how to fit them but initially did not find many willing teachers and to start with became largely self-taught. He wanted to know how to make scleral lenses. So far he only knew that pulverized polymethyl methacrylate (PMMA) was pressed and moulded. In 1951 he met Berlin optician Otto Marzock. He made his only scleral lenses from using military PMMA windshields. His process involved lathe cutting the lenses and resulted in lenses that were thinner than moulded ones. Willi developed a manufacturing method, using a rotary diamond drill, starting form the outer edge and towards the centre at a constant cut speed. This enabled him to make more reproducible lenses and in less time. His enthusiasm in the field was clear from the travels he made in the pursuit of advancement - travelling around Europe, South America, North America and Asia. In 1963 he visited George Nissel in Hemel Hempstead, England. Constantly thriving towards innovations Willi came across the new Naturalens from the USA made from HEMA at a congress in Marseille in 1969. Amongst his contributions to the field, was his own technique of fitting ocular prosthetics, using an alginate impression of the orbit. I was fortunate enough to have dinner with Willi Kaue and learnt more about his fascinating career through the patient interpreting skills of Hilmar Bussacker (the 2008 winner of the same award and the 2007 winner of the European Federation of the Contact Lens and IOL Industries Award). I look forward to 2010 with eager anticipation as to what I may learn and who I might meet!!! Copyright © 2009 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
Refraction simulators used for undergraduate training at Aston University did not realistically reflect variations in the relationship between vision and ametropia. This was because they used an algorithm, taken from the research literature, that strictly only applied to myopes or older hyperopes and did not factor in age and pupil diameter. The aim of this study was to generate new algorithms that overcame these limitations. Clinical data were collected from the healthy right eyes of 873 white subjects aged between 20 and 70 years. Vision and refractive error were recorded along with age and pupil diameter. Re-examination of 34 subjects enabled the calculation of coefficients of repeatability. The study population was slightly biased towards females and included many contact lens wearers. Sex and contact lens wear were, therefore, recorded in order to determine whether these might influence the findings. In addition, iris colour and cylinder axis orientation were recorded as these might also be influential. A novel Blur Sensitivity Ratio (BSR) was derived by dividing vision (expressed as minimum angle of resolution) by refractive error (expressed as a scalar vector, U). Alteration of the scalar vector, to account for additional vision reduction due to oblique cylinder axes, was not found to be useful. Decision tree analysis showed that sex, contact lens wear, iris colour and cylinder axis orientation did not influence the BSR. The following algorithms arose from two stepwise multiple linear regressions: BSR (myopes) = 1.13 + (0.24 x pupil diameter) + (0.14 x U) BSR (hyperopes) = (0.11 x pupil diameter) + (0.03 x age) - 0.22 These algorithms together accounted for 84% of the observed variance. They showed that pupil diameter influenced vision in both forms of ametropia. They also showed the age-related decline in the ability to accommodate in order to overcome reduced vision in hyperopia.
Resumo:
Aims: To survey eye care practitioners from around the world regarding their current practice for anterior eye health recording to inform guidelines on best practice. Methods: The on-line survey examined the reported use of: word descriptions, sketching, grading scales or photographs; paper or computerised record cards and whether these were guided by proforma headings; grading scale choice, signs graded, level of precision, regional grading; and how much time eye care practitioners spent on average on anterior eye health recording. Results: Eight hundred and nine eye care practitioners from across the world completed the survey. Word description (p <. 0.001), sketches (p = 0.002) and grading scales (p <. 0.001) were used more for recording the anterior eye health of contact lens patients than other patients, but photography was used similarly (p = 0.132). Of the respondents, 84.5% used a grading scale, 13.5% using two, with the original Efron (51.6%) and CCLRU/Brien-Holden-Vision-Institute (48.5%) being the most popular. The median features graded was 11 (range 1-23), frequency from 91.6% (bulbar hyperaemia) to 19.6% (endothelial blebs), with most practitioners grading to the nearest unit (47.4%) and just 14.7% to one decimal place. The average time taken to report anterior eye health was reported to be 6.8. ±. 5.7. min, with the maximum time available 14.0. ±. 11. min. Conclusions: Developed practice and research evidence allows best practice guidelines for anterior eye health recording to be recommended. It is recommended to: record which grading scale is used; always grade to one decimal place, record what you see live rather than based on how you intend to manage a condition; grade bulbar and limbal hyperaemia, limbal neovascularisation, conjunctival papillary redness and roughness (in white light to assess colouration with fluorescein instilled to aid visualisation of papillae/follicles), blepharitis, meibomian gland dysfunction and sketch staining (both corneal and conjunctival) at every visit. Record other anterior eye features only if they are remarkable, but indicate that the key tissue which have been examined.
Resumo:
Actual text: I was recently at the Spanish College of Optometry biennial conference and attended a meeting of contact lens lecturers from around Spain and Portugal. We discussed various ideas, mainly about how to share good practice and improve standards. What came to my mind was ‘is there a blueprint for training trainers?’ Well probably not but there are many things that we need to acknowledge such as the way students learn for example. Many educators themselves were taught by lecturers who would write on a blackboard or use acetate on an overhead projector, then came the 35 mm slide era followed by the Powerpoint era. More recently there is a move towards a much more integrated approach of various teaching methods. At my university our contact lens and anterior eye lectures generally follow a format where a narrated Powerpoint lecture is uploaded onto our internal virtual learning environment. This narrated version of the slides is designed to give the didactic element of the topic. The students listen to that before attending an interactive seminar on that topic. The seminar is also recorded so that students can listen to that afterwards. The seminar is designed to give additional information, such as case reports, or to clarify key points or for live demonstrations. It is a good way of doubling the contact time with the students without imposing further on an already packed formal timetable as the students can work in their own time. One problem that we noticed with this approach was that attendance can vary. If the students feel that they will gain something from the interactive seminar then they are more likely to attend – exam tips usually win them over! At the Spanish meeting the educators decided that they wanted to have regular meetings. The industry colleagues in attendance said that they were happy to help but could not necessarily give money, but they could offer meeting rooms, pay for lunch and evening meals. They even said that that they were happy to host meetings and invite other companies too (except to manufacturing plants). In the UK the British Committee of Contact Lens Educators (BUCCLE) meets for one day on three occasions in the year. The American Optometric Contact Lens Educators (AOCLE) meets annually at a three day event. Both these organisations get some help from industry. BUCCLE usually has one of its meetings at a university, one at a company training centre/manufacturing plant/national headquarters and one meeting the day before the BCLA annual conference. BUCCLE usually has its pre-BCLA meeting in conjunction with the International Association of Contact Lens Educators (IACLE). So when educators meet what would they discuss; well probably the focus should be on education rather than actual contact lens knowledge. For example sharing ideas on how to teach toric lens fitting would be better than discussing the actual topic of toric lenses itself. Most universities will have an education department with an expert who could share ideas on how to use the internet in teaching or how to structure lectures or assessments etc. In the past I have helped with similar training programmes in other countries and sharing good practice in pedagogy is always a popular topic. Anyone who is involved in education in the field of contact lenses should look at the IACLE web page and look out for the IACLE World Congress in 2015 in the days preceding the BCLA. Finally, IACLE, AOCLE and BUCCLE all exist as a result of generous educational grants from contact lens companies and anyone interested in finding out more about should refer to their respective web pages.
Resumo:
This thesis is concerned with the nature of biomaterial interactions with compromised host tissue sites. Both ocular and dermal tissues can be wounded, following injury, disease or surgery, and consequently require the use of a biomaterial. Clear analogies exist between the cornea/tear film/contact lens and the dermal wound bed/wound fluid/skin adhesive wound dressing. The work described in this thesis builds upon established biochemistry to examine specific aspects of the interaction of biomaterials with compromised ocular and dermal tissue sites, with a particular focus on the role of vitronectin. Vitronectin is a prominent cell adhesion glycoprotein present in both tear fluid and wound fluid, and has a role in the regulation and upregulation of plasmin. The interaction of contact lenses with the cornea was assessed by a novel on-lens cell-based vitronectin assay technique. Vitronectin mapping showed that vitronectin-mediated cell adhesion to contact lens surfaces was due to the contact lens-corneal mechanical interaction rather than deposition out of the tear film. This deposition is associated predominantly with the peripheral region of the posterior contact lens surface. The locus of vitronectin deposition on the contact lens surface, which is affected by material modulus, is potentially an important factor in the generation of plasmin in the posterior tear film. Use of the vitronectin mapping technique on ex vivo bandage contact lenses revealed greater vitronectin-mediated cell adhesion to the contact lens surfaces in comparison to lenses worn in the healthy eye. The results suggest that vitronectin is more readily deposited from the impaired corneal tissue bed than the intact healthy tissue bed. Significantly, subjects with a deficient tear film were found to deposit high vitronectin-mediated cell adhesion levels to the BCL surface, thus highlighting the influence of the contact lens-tissue interaction upon deposition. Biomimetic principles imply that adhesive materials for wound applications, including hydrogels and hydrocolloids, should closely match the surface energy parameters of skin. The surface properties of hydrocolloid adhesives were found to be easily modified by contact with siliconised plastic release liners. In contrast, paper release liners did not significantly affect the adhesive surface properties. In order to characterise such materials in the actual wound environment, which is an extremely challenging task, preliminary considerations for the design of an artificial wound fluid model from an animal serum base were addressed.
Resumo:
Full text: It seems a long time ago now since we were at the BCLA conference. The excellent FIFA World Cup in Brazil kept us occupied over the summer as well as Formula 1, Wimbledon, Tour de France, Commonwealth Games and of course exam paper marking! The BCLA conference this year was held in Birmingham at the International Convention Centre which again proved to be a great venue. The number of attendees overall was up on previous years, and at a record high of 1500 people. Amongst the highlights at this year's annual conference was the live surgery link where Professor Sunil Shah demonstrated the differences in technique between traditional phacoemulsification cataract surgery and femtosecond assisted phacoemulsification cataract surgery. Dr. Raquel Gil Cazorla, a research optometrist at Aston University, assisted in the procedure including calibrating the femtosecond laser. Another highlight for me was the session that I chaired, which was the international session organised by IACLE (International Association of CL Educators). There was a talk by Mirjam van Tilborg about dry eye prevalence in the Netherlands and how it was managed by medical general practitioners (GPs) or optometrists. It was interesting to know that there are only 2 schools of optometry there and currently under 1000 registered optometrists there. It also seems that GPs were more likely to blame CL as the cause for dry eye whereas optometrists who had a fuller range of tests were better at solving the issue. The next part of the session included the presentation of 5 selected posters from around the world. The posters were also displayed in the main poster area but were selected to be presented here as they had international relevance. The posters were: 1. Motivators and Barriers for Contact Lens Recommendation and Wear by Nilesh Thite (India) 2. Contact lens hygiene among Saudi wearers by Dr. Ali Masmaly (Saudi) 3. Trends of contact lens prescribing and patterns of contact lens practice in Jordan by Dr. Mera Haddad (Jordan) 4. Contact Lens Behaviour in Greece by Dr. Dimitra Makrynioti (Greece) 5. How practitioners inform ametropes about the benefits of contact lenses and overcome the potential barriers: an Italian survey, by Dr. Fabrizio Zeri (Italy) It was interesting to learn about CL practice in different parts, for example the CL wearing population ration in Saudi Arabia is around 1:2 Male:Female (similar to other parts of the world) and although the sale of CL is restricted to registered practitioners there are many unregistered outlets, like clothing stores, that flout the rules. In Jordan some older practitioners will still advise patients to use tap water or even saliva! But thankfully the newer generation of practitioners have been educated not to advise this. In Greece one of the concerns was that some practitioners may advise patients to use disposable lenses for longer than they should and again it seems to be the practitioners with inadequate education that would do this. In India it was found that cost was one barrier to using contact lenses but also some practitioners felt that they shouldn’t offer CLs due to cost too. In Italy sensitive eyes and CL care and maintenance were the barriers to CL wear but the motivators were vision and comfort and aesthetics. Finally the international session ended with the IACLE travel award and educator awards presented by IACLE president Shehzad Naroo and BCLA President Andrew Yorke. The travel award went to Wang Ling, Jinling Institute of Technology, Nanjing, China. There were 3 regional Contact Lens Educator of the Year Awards sponsored by Coopervision and presented by Dr. J.C. Aragorn of Coopervision. 1. Asia Pacific Region – Dr. Rajeswari Mahadevan of Sankara Nethralaya Medical Research Foundation, Chennai, India 2. Americas Region – Dr. Sergio Garcia of University of La Salle, Bogotá and the University Santo Tomás, Bucaramanga, Colombia 3. Europe/Africa – Middle East Region: Dr. Eef van der Worp, affiliated with the University of Maastricht, the Netherlands The posters above were just a small selection of those displayed at this year's BCLA conference. If you missed the BCLA conference then you can see the abstracts for all posters and talks in a virtual issue of CLAE very soon. The poster competition was kindly sponsored by Elsevier. The poster winner this year was: Joan Gispets – Corneal and Anterior Chamber Parameters in Keratoconus The 3 runners up were: Debby Yeung – Scleral Lens Central Corneal Clearance Assessment with Biomicroscopy Sarah L. Smith – Subjective Grading of Lid Margin Staining Heiko Pult – Impact of Soft Contact Lenses on Lid Parallel Conjunctival Folds My final two highlights are a little more personal. Firstly, I was awarded Honorary Life Fellowship of the BCLA for my work with the Journal, and I would like to thank the BCLA, Elsevier, the editorial board of CLAE, the reviewers and the authors for their support of my role. My final highlight from the BCLA conference this year was the final presentation of the conference – the BCLA Gold Medal award. The recipient this year was Professor Philip Morgan with his talk ‘Changing the world with contact lenses’. Phil was the person who advised me to go to my first BCLA conference in 1994 (funnily he didn’t attend himself as he was busy getting married!) and now 20 years later he was being honoured with the accolade of being the BCLA Gold Medallist. The date of his BCLA medal addressed was shared with his father's birthday so a double celebration for Phil. Well done to outgoing BCLA President Andy Yorke and his team at the BCLA (including Nick Rumney, Cheryl Donnelly, Sarah Greenwood and Amir Khan) on an excellent conference. And finally welcome to new President Susan Bowers. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.