873 resultados para Multi-scale modeling
Resumo:
Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.
Resumo:
Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.
Resumo:
Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.
Resumo:
T-cell activation requires interaction of T-cell receptors (TCR) with peptide epitopes bound by major histocompatibility complex (MHC) proteins. This interaction occurs at a special cell-cell junction known as the immune or immunological synapse. Fluorescence microscopy has shown that the interplay among one agonist peptide-MHC (pMHC), one TCR and one CD4 provides the minimum complexity needed to trigger transient calcium signalling. We describe a computational approach to the study of the immune synapse. Using molecular dynamics simulation, we report here on a study of the smallest viable model, a TCR-pMHC-CD4 complex in a membrane environment. The computed structural and thermodynamic properties are in fair agreement with experiment. A number of biomolecules participate in the formation of the immunological synapse. Multi-scale molecular dynamics simulations may be the best opportunity we have to reach a full understanding of this remarkable supra-macromolecular event at a cell-cell junction.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.
A framework for transforming, analyzing, and realizing software designs in unified modeling language
Resumo:
Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design.^ In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.^
Resumo:
The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.
Resumo:
Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined. Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.
Resumo:
The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.
Resumo:
Résumé : Face à l’accroissement de la résolution spatiale des capteurs optiques satellitaires, de nouvelles stratégies doivent être développées pour classifier les images de télédétection. En effet, l’abondance de détails dans ces images diminue fortement l’efficacité des classifications spectrales; de nombreuses méthodes de classification texturale, notamment les approches statistiques, ne sont plus adaptées. À l’inverse, les approches structurelles offrent une ouverture intéressante : ces approches orientées objet consistent à étudier la structure de l’image pour en interpréter le sens. Un algorithme de ce type est proposé dans la première partie de cette thèse. Reposant sur la détection et l’analyse de points-clés (KPC : KeyPoint-based Classification), il offre une solution efficace au problème de la classification d’images à très haute résolution spatiale. Les classifications effectuées sur les données montrent en particulier sa capacité à différencier des textures visuellement similaires. Par ailleurs, il a été montré dans la littérature que la fusion évidentielle, reposant sur la théorie de Dempster-Shafer, est tout à fait adaptée aux images de télédétection en raison de son aptitude à intégrer des concepts tels que l’ambiguïté et l’incertitude. Peu d’études ont en revanche été menées sur l’application de cette théorie à des données texturales complexes telles que celles issues de classifications structurelles. La seconde partie de cette thèse vise à combler ce manque, en s’intéressant à la fusion de classifications KPC multi-échelle par la théorie de Dempster-Shafer. Les tests menés montrent que cette approche multi-échelle permet d’améliorer la classification finale dans le cas où l’image initiale est de faible qualité. De plus, l’étude effectuée met en évidence le potentiel d’amélioration apporté par l’estimation de la fiabilité des classifications intermédiaires, et fournit des pistes pour mener ces estimations.
Resumo:
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.
Resumo:
We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.
Resumo:
Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.
Resumo:
Communication is one team process factor that has received considerable research attention in the team literature. This literature provides equivocal evidence regarding the role of communication in team performance and yet, does not provide any evidence for when communication becomes important for team performance. This research program sought to address this evidence gap by a) testing task complexity and team member diversity (race diversity, gender diversity and work value diversity) as moderators of the team communication — performance relationship; and b) testing a team communication — performance model using established teams across two different task types. The functional perspective was used as the theoretical framework for operationalizing team communication activity. The research program utilised a quasi-experimental research design with participants from a large multi-national information technology company whose Head Office was based in Sydney, Australia. Participants voluntarily completed two team building exercises (a decision making and production task), and completed two online questionnaires. In total, data were collected from 1039 individuals who constituted 203 work teams. Analysis of the data revealed a small number of significant moderation effects, not all in the expected direction. However, an interesting and unexpected finding also emerged from Study One. Large and significant correlations between communication activity ratings were found across tasks, but not within tasks. This finding suggested that teams were displaying very similar profiles of communication on each task, despite the tasks having different communication requirements. Given this finding, Study Two sought to a) determine the relative importance of task versus team effects in explaining variance in team communication measures for established teams; b) determine if established teams had reliable and discernable team communication profiles and if so, c) investigate whether team communication profiles related to task performance. Multi-level modeling and repeated measures analysis of variance (ANOVA) revealed that task type did not have an effect on team communication ratings. However, teams accounted for 24% of the total variance in communication measures. Through cluster analysis, five reliable and distinct team communication profiles were identified. Consistent with the findings of the multi-level analysis and repeated measures ANOVA, teams’ profiles were virtually identical across the decision making and production tasks. A relationship between communication profile and performance was identified for the production task, although not for the decision making task. This research responds to calls in the literature for a better understanding of when communication becomes important for team performance. The moderators tested in this research were not found to have a substantive or reliable effect on the relationship between communication and performance. However, the consistency in team communication activity suggests that established teams can be characterized by their communication profiles and further, that these communication profiles may have implications for team performance. The findings of this research provide theoretical support for the functional perspective in terms of the communication – performance relationship and further support the team development literature as an explanation for the stability in team communication profiles. This research can also assist organizations to better understand the specific types of communication activity and profiles of communication that could offer teams a performance advantage.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.