829 resultados para Multi-classifier systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many complex systems may be described by not one but a number of complex networks mapped on each other in a multi-layer structure. Because of the interactions and dependencies between these layers, the state of a single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of five examples of two-layer complex systems: three real-life data sets in the fields of communication (the Internet), transportation (the European railway system), and biology (the human brain), and two models based on random graphs. In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multi-layer systems are much more vulnerable to errors and intentional attacks than they appear from a single layer perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nykyisessä valmistusteollisuudessa erilaisten robottien ja automatisoitujen tuotantovaiheiden rooli on erittäin merkittävä. Tarkasti suunnitellut liikkeet ja toimintavaiheet voidaan nykyisillä järjestelmillä ajoittaa tarkasti toisiinsa nähden, jolloin erilaisten virhetilanteidenkin sattuessa järjestelmä pystyy toimimaan tilanteen edellyttämällä tavalla. Automatisoinnin etuna on myös tuotannon muokkaaminen erilaisten tuotteiden valmistamiseen pienillä muutoksilla, jolloin tuotantokustannukset pysyvät matalina myös pienten valmistuserien tapauksissa. Usean akselin laitteissa eli niin sanotuissa moniakselikäytöissä laitteen toimintatarkkuus riippuu jokaisen liikeakselin tarkkuudesta. Liikkeenohjauksessa on perinteisesti ollut käytössä myötäkytketty paikkakaskadi, jonka virityksessä otetaan huomioon akselilla olevat erilaiset dynaamiset tilat ja käytettävät referenssit. Monissa nykyisissä hajautetuissa järjestelmissä eli moniakselikäytöissä, joissa jokaiselle akselille on oma ohjauslaite, ei yksittäisen akselin paikkavirhettä huomioida muiden akseleiden ohjauksessa. Työssä tutkitaan erilaisia moniakselijärjestelmien ohjausmenetelmiä ja myötäkytketyn paikkakaskadin toimintaa moniakselikäytössä pyritään parantamaan tuomalla paikkasäätimen rinnalle toinen säädin, jonka tulona on akseleiden välinen paikkaero.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.11a standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 33% to include WLANa compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mit der vorliegenden Arbeit soll ein Beitrag zu einer (empirisch) gehaltvollen Mikrofundierung des Innovationsgeschehens im Rahmen einer evolutorischen Perspektive geleistet werden. Der verhaltensbezogene Schwerpunkt ist dabei, in unterschiedlichem Ausmaß, auf das Akteurs- und Innovationsmodell von Herbert Simon bzw. der Carnegie-School ausgerichtet und ergänzt, spezifiziert und erweitert dieses unter anderem um vertiefende Befunde der Kreativitäts- und Kognitionsforschung bzw. der Psychologie und der Vertrauensforschung sowie auch der modernen Innovationsforschung. zudem Bezug auf einen gesellschaftlich und ökonomisch relevanten Gegenstandsbereich der Innovation, die Umweltinnovation. Die Arbeit ist sowohl konzeptionell als auch empirisch ausgerichtet, zudem findet die Methode der Computersimulation in Form zweier Multi-Agentensysteme Anwendung. Als zusammenfassendes Ergebnis lässt sich im Allgemeinen festhalten, dass Innovationen als hochprekäre Prozesse anzusehen sind, welche auf einer Verbindung von spezifischen Akteursmerkmalen, Akteurskonstellationen und Umfeldbedingungen beruhen, Iterationsschleifen unterliegen (u.a. durch Lernen, Rückkoppelungen und Aufbau von Vertrauen) und Teil eines umfassenderen Handlungs- sowie (im Falle von Unternehmen) Organisationskontextes sind. Das Akteurshandeln und die Interaktion von Akteuren sind dabei Ausgangspunkt für Emergenzen auf der Meso- und der Makroebene. Die Ergebnisse der Analysen der in dieser Arbeit enthaltenen fünf Fachbeiträge zeigen im Speziellen, dass der Ansatz von Herbert Simon bzw. der Carnegie-School eine geeignete theoretische Grundlage zur Erfassung einer prozessorientierten Mikrofundierung des Gegenstandsbereichs der Innovation darstellt und – bei geeigneter Ergänzung und Adaption an den jeweiligen Erkenntnisgegenstand – eine differenzierte Betrachtung unterschiedlicher Arten von Innovationsprozessen und deren akteursbasierten Grundlagen sowohl auf der individuellen Ebene als auch auf Ebene von Unternehmen ermöglicht. Zudem wird deutlich, dass der Ansatz von Herbert Simon bzw. der Carnegie-School mit dem Initiationsmodell einen zusätzlichen Aspekt in die Diskussion einbringt, welcher bislang wenig Aufmerksamkeit fand, jedoch konstitutiv für eine ökonomische Perspektive ist: die Analyse der Bestimmungsgrößen (und des Prozesses) der Entscheidung zur Innovation. Denn auch wenn das Verständnis der Prozesse bzw. der Determinanten der Erstellung, Umsetzung und Diffusion von Innovationen von grundlegender Bedeutung ist, ist letztendlich die Frage, warum und unter welchen Umständen Akteure sich für Innovationen entscheiden, ein zentraler Kernbereich einer ökonomischen Betrachtung. Die Ergebnisse der Arbeit sind auch für die praktische Wirtschaftspolitik von Bedeutung, insbesondere mit Blick auf Innovationsprozesse und Umweltwirkungen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.