878 resultados para Multi-agent computing
Resumo:
Introspecció sobre la dinàmica dels agents té un important impacte en decisions individuals i cooperatives en entorns multi-agent. Introspecció, una habilitat cognitiva provinent de la metàfora "agent", permet que els agents siguin conscients de les seves capacitats per a realitzar correctament les tasques. Aquesta introspecció, principalment sobre capacitats relacionades amb la dinàmica, proporciona als agents un raonament adequat per a assolir compromisos segurs en sistemes cooperatius. Per a tal fi, les capacitats garanteixen una representació adequada i explícita de tal dinàmica. Aquest enfocament canvia i millora la manera com els agents poden coordinar-se per a portar a terme tasques i com gestionar les seves interaccions i compromisos en entorns cooperatius. L'enfocament s'ha comprovat en escenaris on la coordinació és important, beneficiosa i necessària. Els resultats i les conclusions són presentats ressaltant els avantatges de la introspecció en la millora del rendiment dels sistemes multi-agent en tasques coordinades i assignació de tasques.
Resumo:
La gestió de xarxes és un camp molt ampli i inclou molts aspectes diferents. Aquesta tesi doctoral està centrada en la gestió dels recursos en les xarxes de banda ampla que disposin de mecanismes per fer reserves de recursos, com per exemple Asynchronous Transfer Mode (ATM) o Multi-Protocol Label Switching (MPLS). Es poden establir xarxes lògiques utilitzant els Virtual Paths (VP) d'ATM o els Label Switched Paths (LSP) de MPLS, als que anomenem genèricament camins lògics. Els usuaris de la xarxa utilitzen doncs aquests camins lògics, que poden tenir recursos assignats, per establir les seves comunicacions. A més, els camins lògics són molt flexibles i les seves característiques es poden canviar dinàmicament. Aquest treball, se centra, en particular, en la gestió dinàmica d'aquesta xarxa lògica per tal de maximitzar-ne el rendiment i adaptar-la a les connexions ofertes. En aquest escenari, hi ha diversos mecanismes que poden afectar i modificar les característiques dels camins lògics (ample de banda, ruta, etc.). Aquests mecanismes inclouen els de balanceig de la càrrega (reassignació d'ample de banda i reencaminament) i els de restauració de fallades (ús de camins lògics de backup). Aquests dos mecanismes poden modificar la xarxa lògica i gestionar els recursos (ample de banda) dels enllaços físics. Per tant, existeix la necessitat de coordinar aquests mecanismes per evitar possibles interferències. La gestió de recursos convencional que fa ús de la xarxa lògica, recalcula periòdicament (per exemple cada hora o cada dia) tota la xarxa lògica d'una forma centralitzada. Això introdueix el problema que els reajustaments de la xarxa lògica no es realitzen en el moment en què realment hi ha problemes. D'altra banda també introdueix la necessitat de mantenir una visió centralitzada de tota la xarxa. En aquesta tesi, es proposa una arquitectura distribuïda basada en un sistema multi agent. L'objectiu principal d'aquesta arquitectura és realitzar de forma conjunta i coordinada la gestió de recursos a nivell de xarxa lògica, integrant els mecanismes de reajustament d'ample de banda amb els mecanismes de restauració preplanejada, inclosa la gestió de l'ample de banda reservada per a la restauració. Es proposa que aquesta gestió es porti a terme d'una forma contínua, no periòdica, actuant quan es detecta el problema (quan un camí lògic està congestionat, o sigui, quan està rebutjant peticions de connexió dels usuaris perquè està saturat) i d'una forma completament distribuïda, o sigui, sense mantenir una visió global de la xarxa. Així doncs, l'arquitectura proposada realitza petits rearranjaments a la xarxa lògica adaptant-la d'una forma contínua a la demanda dels usuaris. L'arquitectura proposada també té en consideració altres objectius com l'escalabilitat, la modularitat, la robustesa, la flexibilitat i la simplicitat. El sistema multi agent proposat està estructurat en dues capes d'agents: els agents de monitorització (M) i els de rendiment (P). Aquests agents estan situats en els diferents nodes de la xarxa: hi ha un agent P i diversos agents M a cada node; aquests últims subordinats als P. Per tant l'arquitectura proposada es pot veure com una jerarquia d'agents. Cada agent és responsable de monitoritzar i controlar els recursos als que està assignat. S'han realitzat diferents experiments utilitzant un simulador distribuït a nivell de connexió proposat per nosaltres mateixos. Els resultats mostren que l'arquitectura proposada és capaç de realitzar les tasques assignades de detecció de la congestió, reassignació dinàmica d'ample de banda i reencaminament d'una forma coordinada amb els mecanismes de restauració preplanejada i gestió de l'ample de banda reservat per la restauració. L'arquitectura distribuïda ofereix una escalabilitat i robustesa acceptables gràcies a la seva flexibilitat i modularitat.
Resumo:
This thesis addresses the problem of learning in physical heterogeneous multi-agent systems (MAS) and the analysis of the benefits of using heterogeneous MAS with respect to homogeneous ones. An algorithm is developed for this task; building on a previous work on stability in distributed systems by Tad Hogg and Bernardo Huberman, and combining two phenomena observed in natural systems, task partition and hierarchical dominance. This algorithm is devised for allowing agents to learn which are the best tasks to perform on the basis of each agent's skills and the contribution to the team global performance. Agents learn by interacting with the environment and other teammates, and get rewards from the result of the actions they perform. This algorithm is specially designed for problems where all robots have to co-operate and work simultaneously towards the same goal. One example of such a problem is role distribution in a team of heterogeneous robots that form a soccer team, where all members take decisions and co-operate simultaneously. Soccer offers the possibility of conducting research in MAS, where co-operation plays a very important role in a dynamical and changing environment. For these reasons and the experience of the University of Girona in this domain, soccer has been selected as the test-bed for this research. In the case of soccer, tasks are grouped by means of roles. One of the most interesting features of this algorithm is that it endows MAS with a high adaptability to changes in the environment. It allows the team to perform their tasks, while adapting to the environment. This is studied in several cases, for changes in the environment and in the robot's body. Other features are also analysed, especially a parameter that defines the fitness (biological concept) of each agent in the system, which contributes to performance and team adaptability. The algorithm is applied later to allow agents to learn in teams of homogeneous and heterogeneous robots which roles they have to select, in order to maximise team performance. The teams are compared and the performance is evaluated in the games against three hand-coded teams and against the different homogeneous and heterogeneous teams built in this thesis. This section focuses on the analysis of performance and task partition, in order to study the benefits of heterogeneity in physical MAS. In order to study heterogeneity from a rigorous point of view, a diversity measure is developed building on the hierarchic social entropy defined by Tucker Balch. This is adapted to quantify physical diversity in robot teams. This tool presents very interesting features, as it can be used in the future to design heterogeneous teams on the basis of the knowledge on other teams.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
Planning to reach a goal is an essential capability for rational agents. In general, a goal specifies a condition to be achieved at the end of the plan execution. In this article, we introduce nondeterministic planning for extended reachability goals (i.e., goals that also specify a condition to be preserved during the plan execution). We show that, when this kind of goal is considered, the temporal logic CTL turns out to be inadequate to formalize plan synthesis and plan validation algorithms. This is mainly due to the fact that the CTL`s semantics cannot discern among the various actions that produce state transitions. To overcome this limitation, we propose a new temporal logic called alpha-CTL. Then, based on this new logic, we implement a planner capable of synthesizing reliable plans for extended reachability goals, as a side effect of model checking.
Resumo:
The practitioners of bioinformatics require increasing sophistication from their software tools to take into account the particular characteristics that make their domain complex. For example, there is a great variation of experience of researchers, from novices who would like guidance from experts in the best resources to use to experts that wish to take greater management control of the tools used in their experiments. Also, the range of available, and conflicting, data formats is growing and there is a desire to automate the many trivial manual stages of in-silico experiments. Agent-oriented software development is one approach to tackling the design of complex applications. In this paper, we argue that, in fact, agent-oriented development is a particularly well-suited approach to developing bioinformatics tools that take into account the wider domain characteristics. To illustrate this, we design a data curation tool, which manages the format of experimental data, extend it to better account for the extra requirements placed by the domain characteristics, and show how the characteristics lead to a system well suited to an agent-oriented view.
Resumo:
Despite several examples of deployed agent systems, there remain barriers to the large-scale adoption of agent technologies. In order to understand these barriers, this paper considers aspects of marketing theory which deal with diffusion of innovations and their relevance to the agents domain and the current state of diffusion of agent technologies. In particular, the paper examines the role of standards in the adoption of new technologies, describes the agent standards landscape, and compares the development and diffusion of agent technologies with that of object-oriented programming. The paper also reports on a simulation model developed in order to consider different trajectories for the adoption of agent technologies, with trajectories based on various assumptions regarding industry structure and the existence of competing technology standards. We present details of the simulation model and its assumptions, along with the results of the simulation exercises.