864 resultados para Motion compensated frame interpolation
Resumo:
Inspired by experiments that use single-particle tracking to measure the regions of confinement of selected chromosomal regions within cell nuclei, we have developed an analytical approach that takes into account various possible positions and shapes of the confinement regions. We show, in particular, that confinement of a particle into a subregion that is entirely enclosed within a spherical volume can lead to a higher limit of the mean radial square displacement value than the one associated with a particle that can explore the entire spherical volume. Finally, we apply the theory to analyse the motion of extrachromosomal chromatin rings within nuclei of living yeast.
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
Measurement of three-dimensional (3D) knee joint angle outside a laboratory is of benefit in clinical examination and therapeutic treatment comparison. Although several motion capture devices exist, there is a need for an ambulatory system that could be used in routine practice. Up-to-date, inertial measurement units (IMUs) have proven to be suitable for unconstrained measurement of knee joint differential orientation. Nevertheless, this differential orientation should be converted into three reliable and clinically interpretable angles. Thus, the aim of this study was to propose a new calibration procedure adapted for the joint coordinate system (JCS), which required only IMUs data. The repeatability of the calibration procedure, as well as the errors in the measurement of 3D knee angle during gait in comparison to a reference system were assessed on eight healthy subjects. The new procedure relying on active and passive movements reported a high repeatability of the mean values (offset<1 degrees) and angular patterns (SD<0.3 degrees and CMC>0.9). In comparison to the reference system, this functional procedure showed high precision (SD<2 degrees and CC>0.75) and moderate accuracy (between 4.0 degrees and 8.1 degrees) for the three knee angle. The combination of the inertial-based system with the functional calibration procedure proposed here resulted in a promising tool for the measurement of 3D knee joint angle. Moreover, this method could be adapted to measure other complex joint, such as ankle or elbow.
Resumo:
Purpose: To investigate the effect of incremental increases in intraocular straylight on threshold measurements made by three modern forms of perimetry: Standard Automated Perimetry (SAP) using Octopus (Dynamic, G-Pattern), Pulsar Perimetry (PP) (TOP, 66 points) and the Moorfields Motion Displacement Test (MDT) (WEBS, 32 points).Methods: Four healthy young observers were recruited (mean age 26yrs [25yrs, 28yrs]), refractive correction [+2 D, -4.25D]). Five white opacity filters (WOF), each scattering light by different amounts were used to create incremental increases in intraocular straylight (IS). Resultant IS values were measured with each WOF and at baseline (no WOF) for each subject using a C-Quant Straylight Meter (Oculus, Wetzlar, Germany). A 25 yr old has an IS value of ~0.85 log(s). An increase of 40% in IS to 1.2log(s) corresponds to the physiological value of a 70yr old. Each WOFs created an increase in IS between 10-150% from baseline, ranging from effects similar to normal aging to those found with considerable cataract. Each subject underwent 6 test sessions over a 2-week period; each session consisted of the 3 perimetric tests using one of the five WOFs and baseline (both instrument and filter were randomised).Results: The reduction in sensitivity from baseline was calculated. A two-way ANOVA on mean change in threshold (where subjects were treated as rows in the block and each increment in fog filters was treated as column) was used to examine the effect of incremental increases in straylight. Both SAP (p<0.001) and Pulsar (p<0.001) were significantly affected by increases in straylight. The MDT (p=0.35) remained comparatively robust to increases in straylight.Conclusions: The Moorfields MDT measurement of threshold is robust to effects of additional straylight as compared to SAP and PP.
Resumo:
Biologie et médecine - Les podcasts de l'UNIL
Resumo:
A general reduced dimensionality finite field nuclear relaxation method for calculating vibrational nonlinear optical properties of molecules with large contributions due to anharmonic motions is introduced. In an initial application to the umbrella (inversion) motion of NH3 it is found that difficulties associated with a conventional single well treatment are overcome and that the particular definition of the inversion coordinate is not important. Future applications are described
Resumo:
Nanomotors are nanoscale devices capable of converting energy into movement and forces. Among them, self-propelled nanomotors offer considerable promise for developing new and novel bioanalytical and biosensing strategies based on the direct isolation of target biomolecules or changes in their movement in the presence of target analytes. The mainachievements of this project consists on the development of receptor-functionalized nanomotors that offer direct and rapid target detection, isolation and transport from raw biological samples without preparatory and washing steps. For example, microtube engines functionalized with aptamer, antibody, lectin and enzymes receptors were used for the direct isolation of analytes of biomedical interest, including proteins and whole cells, among others. A target protein was also isolated from a complex sample by using an antigen-functionalized microengine navigating into the reservoirs of a lab-on-a-chip device. The new nanomotorbased target biomarkers detection strategy not only offers highly sensitive, rapid, simple and low cost alternative for the isolation and transport of target molecules, but also represents a new dimension of analytical information based on motion. The recognition events can be easily visualized by optical microscope (without any sophisticated analytical instrument) to reveal the target presence and concentration. The use of artificial nanomachines has shown not only to be useful for (bio)recognition and (bio)transport but also for detection of environmental contamination and remediation. In this context, micromotors modified with superhydrophobic layer demonstrated that effectively interacted, captured, transported and removed oil droplets from oil contaminated samples. Finally, a unique micromotor-based strategy for water-quality testing, that mimics live-fish water-quality testing, based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants was also developed. The attractive features of the new micromachine-based target isolation and signal transduction protocols developed in this project offer numerous potential applications in biomedical diagnostics, environmental monitoring, and forensic analysis.
Resumo:
El proyecto trata de convertirse en una herramienta para animadores 3D, tanto para los que hacen películas como para los que modelan videojuegos, que necesiten de un software para simplificar el trabajo que conlleva animar un modelo 3D. Todo sin necesidad de usar trajes especializados. El proyecto, usando Kinect, convertirá los movimientos captados por la cámara y los agregará al modelo, creando una animación basándose en los movimientos reales de una persona.
Resumo:
The paleomagnetic investigations carried out in the 70's on Oligo-Miocene volcanics of Sardinia have demonstrated that the island was turned by 35-30 degrees clockwise from 33 Ma up to 3-1-20.5 Ma and rotated counterclockwise in a few million years [De Jong et al., 1969, 1973; Bobier et Coulon, 1970; Coulon et al., 1974; Manzoni, 1974, 1975; Bellon rr nl.. 1977: Edel et Lortscher, 1977; Edel, 1979, 1980]. Since then, the end of the rotation fixed at 19 Ma by Montigny er al. [1981] was the subject of discussions and several studies associating paleomagnetism and radiometric dating were undertaken [Assorgia er al., 1994: Vigliotti et Langenheim, 1995: Deino et al., 1997; Gattacceca rt Deino, 1999]. This is a contribution to this debate that is hampered by thr important secular variation recorded in the volcanics. The only way to get our of this problem is to sample series of successive flows as completely as possible, and to reduce the effect of secular variation by the calculation of means. Sampling was performed north of Bonorva in 5 pyroclastic flows that belong to the upper ignimbritic series SI2 according to Coulon rr nl. [1974] or LBLS according to Assorgia et al. [1997] (fig. I). Ar-40/Ar-39 dating of biotites from the debris flow (MDF) has yielded an age or 18.35 +/- 0.03 Ma [Dubois, 2000]. Five of the investigated sites are located beneath the debris flow ITV, TVB, TVD, SPM85, SPM86), one site was cured in the matrix of the debris flow (MDF) and one in 4 metric blocks included in the flow (DFC). Another site was sampled in the upper ash flow (PDM) that marks the end of the pyroclastic activity, just before the marine transgression. According to micropaleontological and radiometric dating this transgression has occurred between 18.35 and 17.6 Ma [Dubois, 2000]. After removal of a soft viscous component, the thermal demagnetization generally shows a univectorial behaviour of the remanent magnetization (fig. 2a). The maximum unblocking temperatures of 580-620 degrees (tab. I) and a rapid saturation below 100 mT (fig. 3) indicate that the carrier of the characteristic magnetization is magnetite. The exception comes: from the upper site PDM in which were found two characteristic components, one with a normal polarity and low unblocking temperatures up to 350 degreesC and one with a reversed polarity and maximum unblocking temperatures at 580-600 degreesC of magnetite. After calculation of a mean direction for each flow, the mean << Al >> direction 4 degrees /57 degrees (alpha (95) = 13 degrees) computed with the mean directions for the 5 flows may be considered as weakly affected by secular variation. But the results require a more careful examination. The declinations are N to NNW beneath the debris flow. NNW in the debris flow. and NNE (or SSW) above the debris flow, The elongated distribution of the directions obtained at sites TVB and TVD. scattered from the mean direction of TV to the mean direction of MDF is interpreted as due to partial overprinting during the debris How volcanic episode, The low temperature component PDMa is likely related to the alteration seen on thin sections and is also viewed as an overprint. As NNE/SSW directions occur as well below (mean direction << B >> : 5 degrees /58 degrees) as above the debris flow (PDMb : 200 degrees/-58 degrees). the NNW directions (<< C >> : 337 degrees /64 degrees) associated with the debris flow volcanism may be interpreted as resulting from a magnetic field excursion. According to the polarity scale of Cande and Kent [1992, 1995] and the radiometric age of MDF, the directions with normal polarity (TV, TVB, TVD, SPM85. SPM86a. MDF. DFC) may represent the period 5En. while the directions with reversed polarity PDMb and SPM86b were likely acquired during the period 5Dr. Using the mean << Al >> direction, the mean << B >>, or the PDM direction (tab. I). the deviation in declination with the direction of stable Europe 6.4 degrees /58.7 degrees (alpha (95) = 8 degrees) for a selection of 4 middle Tertiary poles by Besse et Courtillot [1991] or 7 degrees /56 degrees (alpha (95) = 3 degrees) for 19 poles listed by Edel [1980] can be considered as negligible. Using the results from the uppermost ignimbritic layer of Anglona also emplaced around 18.3 Ma [Odin rt al.. 1994]. the mean direction << E >> (3 degrees /51.5 degrees) leads to the same conclusion. On the contrary, when taking into account all dated results available for the period 5En (mean direction << D >> 353 degrees /56 degrees for 45 sites) (tab. II). the deviation 13 degrees is much more significant. As the rotation of Sardinia started around 21-20.5 Ma. the assumption of a constant velocity of rotation and the deviations of the Sardinia directions with respect to the stable Europe direction locate the end of the motion between 18.3 and 17.2 or 16.7 Ma (fig. 4). During the interval 18.35-17.5 Ma, the marine transgression took place. At the same period a NE-SW shortening interpreted as resulting from the collision of Sardinia with Apulia affected different parts of the island [Letouzey et al., 1982]. Consequently, the new paleomagnetic results and the tectono-sedimentary evolution are in favour of an end of the rotation at 17.5-18 Ma.
Resumo:
In the past, research in ontology learning from text has mainly focused on entity recognition, taxonomy induction and relation extraction. In this work we approach a challenging research issue: detecting semantic frames from texts and using them to encode web ontologies. We exploit a new generation Natural Language Processing technology for frame detection, and we enrich the frames acquired so far with argument restrictions provided by a super-sense tagger and domain specializations. The results are encoded according to a Linguistic MetaModel, which allows a complete translation of lexical resources and data acquired from text, enabling custom transformations of the enriched frames into modular ontology components.
Resumo:
A partir de un acto interactivo con la wwww.aeat.es, el usuario envía telemáticamente el modelo 100 en un entorno con tendencia a la incertidumbre y a las dificultades de usabilidad, sin embargo, la investigación pretende demostrar que en dicho acto, el usuario construye una historia narrativa debido a la existencia de una motivación y a la tendencia connatural a la representación narrativa, a pesar que la web no fue intencionalmente construida con propósitos narrativos. El estudio, además, enfoca la interacción como un acto inmersivo y reconoce en la incertidumbre las variables que determinan la continuidad y rumbo del relato. La investigación propone un modelo interpretativo para el análisis y la estructuración del espacio y la historia implícita. Y a nivel exploratorio, se propone la aplicación del Mouse Tracking como técnica científica.