331 resultados para Mortar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Civil e Ambiental - FEB
Resumo:
Pós-graduação em Química - IQ
Resumo:
In this work, a non-linear Boundary Element Method (BEM) formulation with damage model is extended for numerical simulation of structural masonry walls in 2D stress analysis. The formulation is reoriented to analyse structural masonry, the component materials of which, clay bricks and mortar, are considered as damaged materials. Also considered are the internal variables and cell discretization of the domain. A damage model is used to represent the material behaviour and the domain discretization is also proposed and discussed. The paper presents the numerical parameters of the damage model for the material properties of the masonry components, clay bricks and mortar. Some examples are shown to validate the formulation.
Durabilidade da argamassa mista de revestimento interno contendo dregs-grits em substituição à areia
Resumo:
This paper concerns about the durability of new material in construction. It is noteworthy the fact that increases increasingly searching for alternative materials that do not depend only of natural resources and at the same time be an alternative for reuse of industrial waste. Since the construction materials have a long life and a high cost of civil works and maintenance, it is crucial to estimate the behavior of a new product. Thus , this work discuss the durability of mixed mortar lining , made with waste from the process Kraft pulp production , known as dregs and grits , in partial replacement of sand. Tests were conducted to simulate conditions as adverse environments of constant heat and fire, with the aim of analyzing the behavior of mortar mixed matched the behavior of standard mortar
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pechini's method has been successfully used to prepare Li-doped MgNb2O6(MN) at short time and low temperature. It consists in the preparation of metal citrate solution, which is polymerized at 250°C to form a high viscous resin. This resin was burned in a box type furnace at 400°C/2h and ground in a mortar. Successive steps of calcination up to 900°C were used to form a crystalline precursor. SEM, DTA and XRD were used to characterize the powders. MN precursor powders containing from 0.1 to 5.0 mol% of LiNbO3 additive was prepared aiming better dielectric properties and microstructural characteristics of the PMN prepared from columbite route. SEM analysis showed that particles increased by sintering, forming large agglomerates. The surface area is also substantially reduced with the increase in additive amount above 1.0 mol%. In XRD pattern of the precursor material with 5.0 mol% of additive was observed the LiNbO3 phase of trigonal structure. XRD data were used for Rietveld refinement and a decrease in microstrain and pronounced increase in crystallite size with the increase of LiNbO3 were observed. It is in agreement with the particle morphologies observed by SEM analysis.
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Two of the major problems caused by construction activity are the production of construction and demolition waste (CDW) and the exploitation of mineral resources, causing big impacts on the environment. Therefore, the recycling has been shown as an alternative to mitigate the harmful effects of waste on the urban environment and prevent the exploitation of new raw materials. This course work aims to study the behavior of recycled aggregates from Vale do Paraíba in concrete and mortar. Initially, it presents the definitions of recycled aggregates according to CONAMA Resolution No. 307/2002, the aggregate settings for concrete and mortar (such as the grain size, its origin and density, and the characterization parameters according to ABNT), and the definition of ACI method of concrete mix design. Afterwards, it presents the characterization of materials separated by assays. After that, it shows the theoretical concrete proportioning applying the ACI method and experimental concrete proportioning. Then, the analysis of results is performed to finally conclude that the materials provided can't be used to replace natural aggregates because they cannot have the same performance. With the studies, it could be observed that the recycled aggregate presents a great complexity and diversity in origin, therefore the form how the material should be handled requires great care
Resumo:
Two of the major problems caused by construction activity are the production of construction and demolition waste (CDW) and the exploitation of mineral resources, causing big impacts on the environment. Therefore, the recycling has been shown as an alternative to mitigate the harmful effects of waste on the urban environment and prevent the exploitation of new raw materials. This course work aims to study the behavior of recycled aggregates from Vale do Paraíba in concrete and mortar. Initially, it presents the definitions of recycled aggregates according to CONAMA Resolution No. 307/2002, the aggregate settings for concrete and mortar (such as the grain size, its origin and density, and the characterization parameters according to ABNT), and the definition of ACI method of concrete mix design. Afterwards, it presents the characterization of materials separated by assays. After that, it shows the theoretical concrete proportioning applying the ACI method and experimental concrete proportioning. Then, the analysis of results is performed to finally conclude that the materials provided can't be used to replace natural aggregates because they cannot have the same performance. With the studies, it could be observed that the recycled aggregate presents a great complexity and diversity in origin, therefore the form how the material should be handled requires great care
Resumo:
The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO2 emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO2 emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO2 throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO2 is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The goal of this article was to evaluate the surface characteristics of the pine fibres and its impact on the performance of fibre-cement composites. Lower polar contribution of the surface energy indicates that unbleached fibres have less hydrophilic nature than the bleached fibres. Bleaching the pulp makes the fibres less stronger, more fibrillated and permeable to liquids due to removal the amorphous lignin and its extraction from the fibre surface. Atomic force microscopy reveals these changes occurring on the fibre surface and contributes to understanding the mechanism of adhesion of the resulting fibre to cement interface. Scanning electron microscopy shows that pulp bleaching increased fibre/cement interfacial bonding, whilst unbleached fibres were less susceptible to cement precipitation into the fibre cavities (lumens) in the prepared composites. Consequently, bleached fibre-reinforced composites had lower ductility due to the high interfacial adhesion between the fibre and the cement and elevated rates of fibre mineralization.
Resumo:
Mortar panels painted with three different white acrylic coatings were exposed to the environment in urban (So Paulo) and rural (Pirassununga) sites in Brazil for 7 years. After this time, all panels were almost equally discoloured, and paint detachment was observed to only a small degree. The biofilms were composed mainly of cyanobacteria and filamentous fungi, principal genera being Gloeocapsa and Chroococcidiopsis of the cyanobacteria, and Cladosporium and Alternaria of the fungi. Two of the three paints in Pirassununga became covered by a pink film that contained red-encapsulated Gloeocapsa and clay particles. The third, an 800% elastomeric matt formulation, became discoloured with a grey, only slightly pink, film, although the same cyanobacteria were present. The levels of paint detachments from all films in both locations were low, with rating range of 0-1 of a maximum 5 (100% detachment). After high-pressure water jetting, paint detachments increased at both locations, up to 2 in Pirassununga and 3 in So Paulo. Discoloration decreased; L*A*B* analysis of surface discoloration showed that Delta E (alteration in colour from the original paint film) changed from 28-39 before cleaning to 13-16 afterwards. The pink coloration was not entirely removed from Pirassununga samples, suggesting that cyanobacterial cells are difficult to detach, and microscopic analysis of the biofilms confirmed that Gloeocapsa was still present as the principal contaminant on all surfaces, with Chroococcidiopsis being present as the second most common. Almost no fungi were detected after water jet application.