916 resultados para Morphing Alteration Detection Image Warping
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.
Resumo:
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.
Resumo:
Information representation is a critical issue in machine vision. The representation strategy in the primitive stages of a vision system has enormous implications for the performance in subsequent stages. Existing feature extraction paradigms, like edge detection, provide sparse and unreliable representations of the image information. In this thesis, we propose a novel feature extraction paradigm. The features consist of salient, simple parts of regions bounded by zero-crossings. The features are dense, stable, and robust. The primary advantage of the features is that they have abstract geometric attributes pertaining to their size and shape. To demonstrate the utility of the feature extraction paradigm, we apply it to passive navigation. We argue that the paradigm is applicable to other early vision problems.
Resumo:
This report describes the implementation of a theory of edge detection, proposed by Marr and Hildreth (1979). According to this theory, the image is first processed independently through a set of different size filters, whose shape is the Laplacian of a Gaussian, ***. Zero-crossings in the output of these filters mark the positions of intensity changes at different resolutions. Information about these zero-crossings is then used for deriving a full symbolic description of changes in intensity in the image, called the raw primal sketch. The theory is closely tied with early processing in the human visual systems. In this report, we first examine the critical properties of the initial filters used in the edge detection process, both from a theoretical and practical standpoint. The implementation is then used as a test bed for exploring aspects of the human visual system; in particular, acuity and hyperacuity. Finally, we present some preliminary results concerning the relationship between zero-crossings detected at different resolutions, and some observations relevant to the process by which the human visual system integrates descriptions of intensity changes obtained at different resolutions.
Resumo:
This thesis explores how to represent image texture in order to obtain information about the geometry and structure of surfaces, with particular emphasis on locating surface discontinuities. Theoretical and psychophysical results lead to the following conclusions for the representation of image texture: (1) A texture edge primitive is needed to identify texture change contours, which are formed by an abrupt change in the 2-D organization of similar items in an image. The texture edge can be used for locating discontinuities in surface structure and surface geometry and for establishing motion correspondence. (2) Abrupt changes in attributes that vary with changing surface geometry ??ientation, density, length, and width ??ould be used to identify discontinuities in surface geometry and surface structure. (3) Texture tokens are needed to separate the effects of different physical processes operating on a surface. They represent the local structure of the image texture. Their spatial variation can be used in the detection of texture discontinuities and texture gradients, and their temporal variation may be used for establishing motion correspondence. What precisely constitutes the texture tokens is unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings of them may. (4) The above primitives need to be assigned rapidly over a large range in an image.
Resumo:
Y. Zhu, S. Williams and R. Zwiggelaar, 'Computer technology in detection and staging of prostate carcinoma: a review', Medical Image Analysis 10 (2), 178-199 (2006)
Resumo:
R. Zwiggelaar, T.C. Parr, J.E. Schumm. I.W. Hutt, S.M. Astley, C.J. Taylor and C.R.M. Boggis, 'Model-based detection of spiculated lesions in mammograms', Medical Image Analysis 3 (1), 39-62 (1999)
Resumo:
R. Zwiggelaar, C.R. Bull, M.J. Mooney and S. Czarnes, 'The detection of 'soft' materials by selective energy xray transmission imaging and computer tomography', Journal of Agricultural Engineering Research 66 (3), 203-212 (1997)
Resumo:
R. Zwiggelaar, Q. Yang, E. Garcia-Pardo and C.R. Bull, 'Using spectral information and machine vision for bruise detection on peaches and apricots', Journal of Agricultural Engineering Research 63 (4), 323-332 1996)
Resumo:
Huelse, M, Barr, D R W, Dudek, P: Cellular Automata and non-static image processing for embodied robot systems on a massively parallel processor array. In: Adamatzky, A et al. (eds) AUTOMATA 2008, Theory and Applications of Cellular Automata. Luniver Press, 2008, pp. 504-510. Sponsorship: EPSRC
Resumo:
T.Boongoen and Q. Shen. Semi-Supervised OWA Aggregation for Link-Based Similarity Evaluation and Alias Detection. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 288-293, 2009. Sponsorship: EPSRC
Resumo:
We introduce "BU-MIA," a Medical Image Analysis system that integrates various advanced chest image analysis methods for detection, estimation, segmentation, and registration. BU-MIA evaluates repeated computed tomography (CT) scans of the same patient to facilitate identification and evaluation of pulmonary nodules for interval growth. It provides a user-friendly graphical user interface with a number of interaction tools for development, evaluation, and validation of chest image analysis methods. The structures that BU-MIA processes include the thorax, lungs, and trachea, pulmonary structures, such as lobes, fissures, nodules, and vessels, and bones, such as sternum, vertebrae, and ribs.
Resumo:
An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases.
Resumo:
A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.