887 resultados para Monometallic catalyst
Resumo:
The thermal activation of a silica-stabilized γ-Alumina impacts positively on the oxidative dehydrogenation of ethylbenzene (EB) to styrene (ST). A systematic thermal study reveals that the transition from γ-alumina into transitional phases at 1050C leads to an optimal enhancement of both conversion and selectivity under pseudo-steady state conditions; where active and selective coke have been deposited. The effect is observed in the reaction temperature range of 450-475C at given operation conditions resulting in the highest ST yield, while at 425C this effect is lost due to incomplete O2 conversion. The conversion increase is ascribed to the ST selectivity improvement that makes more O2 available for the main ODH reaction. The fresh aluminas and catalytically active carbon deposits on the spent catalysts were characterized by gas adsorption (N 2 and Ar), acidity evaluation by NH3-TPD and pyridine adsorption monitored by FTIR, thermal and elemental analyses, solubility in CH2Cl2 and MALDI-TOF to correlate the properties of both phases with the ST selectivity enhancement. Such an increase in selectivity was interpreted by the lower reactivity of the carbon deposits that diminished the COx formation. The site requirements of the optimal catalyst to create the more selective coke is related to the higher density of Lewis sites per surface area, no mixed Si-Al Brønsted sites are formed while the acid strength of the formed Lewis sites is relatively weaker than those of the bare alumina. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The metal catalyzed hydrogenolysis of the biomass-derived THF-dimethanol to 1,2,6-hexanetriol using heterogeneous catalysts was investigated. Bimetallic Rh-Re catalysts (4 wt% Rh and a Re/Rh (mol. ratio of 0.5) on a silica support gave the best performance and 1,2,6-hexanetriol was obtained in 84% selectivity at 31% conversion (120 C, 80 bar, 4 h); the selectivity reaches a maximum of 92% at 80 C. The product distribution at prolonged reaction times or higher temperatures or both shows the formation of diols and mono-alcohols, indicating that the 1,2,6-hexanetriol is prone to subsequent hydrodeoxygenation reactions. Different silica supports were investigated and optimal results were obtained with an amorphous silica featuring an intermediate surface area and an average mesopore size of about 6 nm. TPR and XPS surface analysis support the presence of mixed Rh and Re particles. The redox Reδ+/ReTotal surface ratio correlates with the conversion in a volcano type dependency. Both gas phase as well as Rh200Re1OH cluster DFT calculations support an acid-metal bifunctional mechanism and explain the products distribution. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Acknowledgements The support of the Spanish Government (projects CTQ2014-52956-C3-2-R and CTQ2014-52956-C3-3-R) is recognized.
Resumo:
This thesis describes a systematic investigation of the mechanistic and synthetic aspects of intramolecular reactions of a series of α-diazo-β-oxo sulfone derivatives using copper and, to a lesser extent, rhodium catalysts. The key reaction pathways explored were C–H insertion and cyclopropanation, with hydride transfer competing in certain instances. Significantly, up to 98% ee has been achieved in the C–H insertion processes using copper-NaBARF-bisoxazoline catalysts, with the presence of the additive NaBARF critical to the efficiency of the transformations. This novel synthetic methodology provides access to a diverse range of enantioenriched heterocyclic compounds including thiopyrans, sulfolanes, β- and γ-lactams, in addition to carbocycles such as fused cyclopropanes. The synthesis of the α-diazosulfones required for subsequent investigations is initially described. Of the twenty seven diazo sulfones described, nineteen are novel and are fully characterised in this work. The discussion is subsequently focused on a study of the copper and rhodium catalysed reactions of the α-diazosulfones with Chapter Four concentrated on highly enantioselective C–H insertion to form thiopyrans and sufolanes, Chapter Five focused on C–H insertion to form fused sulfolanes, Chapter Six focused on C–H insertion in sulfonyl α-diazoamides where both lactam formation and / or thiopyran / sulfolane formation can result from competing C–H insertion pathways, while Chapter Seven focuses on cyclopropanation to yield fused cyclopropane derviatives. One of the key outcomes of this work is an insight into the steric and / or electronic factors on both the substrate and the catalyst which control regio-, diastereo- and enantioselectivity patterns in these synthetically powerful transformations. Full experimental details for the synthesis and spectral characterisation of the compounds are included at the end of each Chapter, with details of chiral stationary phase HPLC analysis and assignment of absolute stereochemistry included in the appendix.
Resumo:
Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.
Resumo:
To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.
Resumo:
Palladium, platinum bimetallic catalysts supported on η-Al2O3, ZSM-5(23) and ZSM-5(80), with and without the addition of TiO2, were prepared and used for low temperature total methane oxidation (TMO). The catalysts were tested under reaction temperatures of 200-500 °C with a GHSV of 100,000 mL g-1 h-1. It was found that all four components, palladium, platinum, an acidic support and oxygen carrier were needed to achieve a highly active and stable catalyst. The optimum support being 17.5% TiO2 on ZSM-5(80) where the T10% was observed at only 200 °C. On addition of platinum, longer time on stream experiments showed no decrease in the catalyst activity over 50 h at 250 °C.
Resumo:
Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C.
Resumo:
High-performance and low-cost bifunctional electrocatalysts play crucial roles in oxygen reduction and evolution reactions. Herein, a novel three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding CoO nanoparticles into nitrogen and sulfur co-doped carbon nanofiber networks (denoted as CoO@N/S-CNF) through a facile approach. The carbon nanofiber networks were derived from a nanostructured biological material which provided abundant functional groups to nucleate and anchor nanoparticles while retaining its interconnected 3D porous structure. The composite possesses a high specific surface area and graphitization degree, which favors both mass transport and charge transfer for electrochemical reaction. The CoO@N/S-CNF not only exhibits highly efficient catalytic activity towards oxygen reduction reaction (ORR) in alkaline media with an onset potential of about 0.84 V, but also shows better stability and stronger resistance to methanol than Pt/C. Furthermore, it only needs an overpotential of 1.55 V to achieve a current density of 10 mA cm-2, suggesting that it is an efficient electrocatalyst for oxygen evolution reaction (OER). The ΔE value (oxygen electrode activity parameter) of CoO@N/S-CNF is calculated to be 0.828 V, which demonstrates that the composite could be a promising bifunctional electrocatalyst for both ORR and OER.
Resumo:
Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.
Resumo:
Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.
Resumo:
La tesi nasce dalla volontà di agire sull’area della Darsena di Ravenna, strategica in quanto via d’acqua navigabile che congiunge il mare con il centro città ma dal potenziale ancora poco sfruttato. Il progetto è studiato per essere inserito come catalizzatore urbano, creando spazi di interazione attraverso elementi modulari galleggianti e riconfigurabili per adattarsi a programmi d’uso flessibili; tali elementi si aggregano formando un sistema che ristruttura lo spazio dell’attuale banchina, cambiandone la percezione da barriera a waterfront urbano. La necessità di ottenere una struttura con capacità di crescita e flessibilità programmatica sfocia in un approccio modulare seguendo il principio massima variazione/minimo numero di elementi i cui principi aggregativi si basano sulla tassellazione “Cairo”. Vengono studiate le possibilità di incorporare variazione ed eterogeneità all’interno del sistema senza comprometterne la modularità fino ad integrare percorsi multilivello. La definizione delle morfologie delle parti che compongono i moduli si basano sullo studio dei principi di galleggiamento, stabilità e yacht design: a partire dalla forma dello scafo adatta ai principi di tiling definiti in precedenza, tutte le parti che compongono le varie tipologie di modulo sono progettate cercando continuità e integrazione tettonica (geometrica, strutturale, funzionale e percettiva). Vengono proposte soluzioni integrate sia per le problematiche tipiche delle strutture galleggianti sia per l’inserimento di attività all’interno della soluzione architettonica. Vengono prototipati di una serie di moduli, scelti in modo da dimostrare i principi di ricombinazione, continuità, modularità e tiling.