988 resultados para Monolayer catalysts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved photoluminescence (PL) of sub-monolayer (SML) InGaAs/GaAs quantum-dot-quantum-well heterostructures was measured at 5 K for the first time. The radiative lifetime of SML quantum dots (QDs) increases from 500 ps to 800 ps with the increase of the size of QDs, which is related to the small confinement energy of the excitons inside SML QDs and the exciton transfer from smaller QDs to larger ones through tunneling. The rise time of quantum-dot state PL signal strongly depends on the excitation power density. At low excitation power density, the rise time is about 35 ps, the mechanism of carrier capture is dominated by the emission of longitudinal-optical phonons. At high excitation power density, the rise time decreases as the excitation density increases, and Auger process plays an important role in the carrier capture. These results are very useful for understanding the working properties of sub-monolayer quantum-dot devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using time-resolved photoluminescence and time-resolved Kerr rotation, we have studied the unique electron spin dynamics in InAs monolayer (ML) and submonolayer (SML), which were sandwiched in GaAs matrix. Under non-resonant excitation, the spin relaxation lifetimes of 3.4 ns and 0.48 ns were observed for 1/3 ML and I ML InAs samples, respectively. More interestingly, the spin lifetime of the 1/3 ML InAs decreased dramatically under resonant excitation, down to 70 ps, while the spin lifetime of the 1 ML sample did not vary much, changing only from 400 to 340 ps. These interesting results come from the different electron-hole interactions caused by different spatial electron-hole correlation, and they provide a direct evidence of the dominant spin relaxation process, i.e. the BAP mechanism. Furthermore, these new results may provide a valuable enlightenment in controlling the spin relaxation and in seeking new material systems for spintronics application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the morphology of an InGaAs nanostructure grown by molecular beam epitaxy via cycled (InAs)(n)/(GaAs)(n) monolayer deposition. Atomic force microscopy images clearly show that varying monolayer deposition per cycle has significant influence on the size, density and shape of the InGaAs nanostructure. Low-temperature photoluminescence spectra show the effect of n on the optical quality, and 1.35mum photoluminescence with a linewidth of only 19.2meV at room temperature has been achieved in the (InAs)(1)/(GaAs)(1) structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-plane optical anisotropy which comes from the heavy hole and the light hole transitions in an InAs monolayer inserted in (311)-oriented GaAs matrix is observed by reflectance difference spectroscopy. The observed steplike density of states demonstrates that the InAs layer behaves like a two-dimensional quantum well rather than isolated quantum dots. The magnitude of the anisotropy is in good agreement with the intrinsic anisotropy of (311) orientation quantum wells, indicating that there is little structural or strain anisotropy of the InAs layer grown on (311)-oriented GaAs surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru-Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer-Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C-5-C-12). The tailor-made Ru-Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time. Ru increased Cor reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru-Co/SiO2/HZSM-5 catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High amounts of acid compounds in bio-oil not only lead to the deleterious properties such as corrosiveness and high acidity, but also set up many obstacles to its wide applications. By hydrotreating the bio-oil under mild conditions, some carboxylic acid compounds could be converted to alcohols which would esterify with the unconverted acids in the bio-oil to produce esters. The properties of the bio-oil could be improved by this method. In the paper, the raw bio-oil was produced by vacuum pyrolysis of pine sawdust. The optimal production conditions were investigated. A series of nickel-based catalysts were prepared. Their catalytic activities were evaluated by upgrading of model compound (glacial acetic acid). Results showed that the reduced Mo-10Ni/gamma-Al2O3 catalyst had the highest activity with the acetic acid conversion of 33.2%. Upgrading of the raw bio-oil was investigated over reduced Mo-10Ni/gamma-Al2O3 catalyst. After the upgrading process, the pH value of the bio-oil increased from 2.16 to 2.84. The water content increased from 46.2 wt.% to 58.99 wt.%. The H element content in the bio-oil increased from 6.61 wt.% to 6.93 wt.%. The dynamic viscosity decreased a little. The results of GC-MS spectrometry analysis showed that the ester compounds in the upgraded bio-oil increased by 3 times. it is possible to improve the properties of bio-oil by hydrotreating and esterifying carboxyl group compounds in the bio-oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of five metal catalysts (K, Na, Ca, Mg, and Fe) on CO2 gasification reactivity of fir char were studied using thermal gravimetric analysis. The degree of carbonization, crystal structure and morphology of char samples was characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The CO2 gasification reactivity of fir char was improved through the addition of metal catalysts, in the order K>Na>Ca>Fe>Mg. XRD analysis indicated that Na and Ca improved the formation of crystal structure, and that Mg enhanced the degree of carbon structure ordering. SEM analysis showed that spotted activation centers were distributed on the surface of char samples impregnated with catalysts. Moreover, a loose flake structure was observed on the surface of both K-char and Na-char. Finally, the kinetic parameters of CO2 gasification of char samples were calculated mathematically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2/4A zeolite composite catalysts were prepared by coating TiO2 on 4A zeolite via liquid phase deposition. The TiO 2/4A zeolite composite catalysts wtih higher surface weak acidity and lower mediate strong acidity exhibit much better catalytic performance on ethanol dehydration to ethylene compared with 4A zeolite. It is suggested that the TiO2 promoter could improve the effective Lewis acidity of composite catalyst which consequently enhanced the catalytic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autothermal reforming of methanol for hydrogen production was investigated over ZnO-ZnCr2O4 supported on a series of metal oxides (Al2O3, CeO2, ZrO2 and CeO2-ZrO2)CeO2-ZrO2 mixed oxides with Ce /Zr molar ratio of 4/1 was found to be the optimal support which showed significant effect on the catalytic activity and selectivity. The ZnO-ZnCr2O4/CeO2-ZrO2 and ZnO-ZnCr2O4 catalysts were characterized by XRD, TEM, H-2-TPR and XPS. The results show that CeO2-ZrO2 mixed oxides have significant effect on the catalytic performance and the supported catalyst shows more uniform temperature distribution in the catalyst bed which was mainly due to its reasonable redox properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of biodiesel is greatly increasing due to its enviromental benefits. However, production costs are still rather high, compared to petroleum-based diesel fuel. The introduction of a solid heterogeneous catalyst in biodiesel production could reduce its price, becoming competitive with diesel also from a financial point of view. Therefore, great research efforts have been underway recently to find the right catalysts. This paper will be concerned with reviewing acid and basic heterogeneous catalyst performances for biodiesel production, examining both scientific and patent literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.