978 resultados para Molecular Theory
Resumo:
The use of B-spline basis sets in R-matrix theory for scattering processes has been investigated. In the present approach a B-spline basis is used for the description of the inner region, which is matched to the physical outgoing wavefunctions by the R-matrix. Using B-splines, continuum basis functions can be determined easily, while pseudostates can be included naturally. The accuracy for low-energy scattering processes is demonstrated by calculating inelastic scattering cross sections for e colliding on H. Very good agreement with other calculations has been obtained. Further extensions of the codes to quasi two-electron systems and general atoms are discussed as well as the application to (multi) photoionization.
Resumo:
The results of calculations investigating the effects of autodetaching resonances on the multiphoton detachment spectra of H are presented. The R-matrix Floquet method is used, in which the coupling of the ion with the laser field is described non-perturbatively. The laser field is fixed at an intensity of 10 W cm, while frequency ranges are chosen such that the lowest autodetaching states of the ion are excited through a two- or three-photon transition from the ground state. Detachment rates are compared, where possible, to previous results obtained using perturbation theory. An illustration of how non-lowest-order processes, involving autodetaching states, can lead to light-induced continuum structures is also presented. Finally, it is demonstrated that by using a frequency connecting the 1s and 2s states, the probability of exciting the residual hydrogen atom is significantly enhanced.
Resumo:
The R-matrix Floquet approach is applied to study the negative F and Cl ions in a light field. Detachment rates are obtained for detachment processes involving up to three photons. The results obtained in the present approach are compared to other experimental and theoretical results. For two- and three-photon processes reasonable agreement with other calculations has been found, while for two-photon detachment the results agree with the experimental cross sections. The three-photon results are in less good agreement with experiment although the larger error bars make accurate comparisons more difficult. The changes in the detachment behaviour for these ions are compared to each other as well as to the detachment behaviour of H.
Resumo:
A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.
Resumo:
We present a one-dimensional scattering theory which enables us to describe a wealth of effects arising from the coupling of the motional degree of freedom of scatterers to the electromagnetic field. Multiple scattering to all orders is taken into account. The theory is applied to describe the scheme of a Fabry-Perot resonator with one of its mirrors moving. The friction force, as well as the diffusion, acting on the moving mirror is derived. In the limit of a small reflection coefficient, the same model provides for the description of the mechanical effect of light on an atom moving in front of a mirror.
Resumo:
Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter ? was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter ? was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (?G mix) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram
Resumo:
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
Resumo:
We have developed the capability to determine accurate harmonic spectra for multielectron atoms within time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of the dipole length, velocity, or acceleration operator. We assess the calculation of the harmonic spectrum from He irradiated by 390-nm laser light with intensities up to 4 x 10(14) W cm(-2) using each form, including the influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from TDRM theory are compared with results from the HELIUM code, finding good quantitative agreement between the methods. We find that bases which include pseudostates give the best comparison with the HELIUM code, but models comprising only physical orbitals also produce accurate results.
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Resumo:
It is well known that shape corrections have to be applied to the local-density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham exchange-correlation potential in order to obtain reliable response properties in time dependent density functional theory calculations. Here we demonstrate that it is an oversimplified view that these shape corrections concern primarily the asymptotic part of the potential, and that they affect only Rydberg type transitions. The performance is assessed of two shape-corrected Kohn-Sham potentials, the gradient-regulated asymptotic connection procedure applied to the Becke-Perdew potential (BP-GRAC) and the statistical averaging of (model) orbital potentials (SAOP), versus LDA and GGA potentials, in molecular response calculations of the static average polarizability alpha, the Cauchy coefficient S-4, and the static average hyperpolarizability beta. The nature of the distortions of the LDA/GGA potentials is highlighted and it is shown that they introduce many spurious excited states at too low energy which may mix with valence excited states, resulting in wrong excited state compositions. They also lead to wrong oscillator strengths and thus to a wrong spectral structure of properties like the polarizability. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically underestimate contributions to alpha and S-4 from bound Rydberg-type states and overestimate those from the continuum. Cancellation of the errors in these contributions occasionally produces fortuitously good results. The distortions of the LDA, BLYP, and BP spectra are related to the deficiencies of the LDA/GGA potentials in both the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC potentials produce high quality polarizabilities for 21 molecules and also reliable Cauchy moments and hyperpolarizabilities for the selected molecules. The analysis for the N-2 molecule shows, that both SAOP and BP-GRAC yield reliable energies omega(i) and oscillator strengths f(i) of individual excitations, so that they reproduce well the spectral structure of alpha and S-4.(C) 2002 American Institute of Physics.
Resumo:
The analysis of clinical breast samples using biomarkers is integral to current breast cancer management. Currently, a limited number of targeted therapies are standard of care in breast cancer treatment. However, these targeted therapies are only suitable for a subset of patients and resistance may occur. Strategies to prevent the occurrence of invasive lesions are required to reduce the morbidity and mortality associated with the development of cancer. In theory, application of targeted therapies to pre-invasive lesions will prevent their progression to invasive lesions with full malignant potential. The diagnostic challenge for pathologists is to make interpretative decisions on early detected pre-invasive lesions. Overall, only a small proportion of these pre-invasive lesions will progress to invasive carcinoma and morphological assessment is an imprecise and subjective means to differentiate histologically identical lesions with varying malignant potential. Therefore differential biomarker analysis in pre-invasive lesions may prevent overtreatment with surgery and provide a predictive indicator of response to therapy. There follows a review of established and emerging potential druggable targets in pre-invasive lesions and correlation with lesion morphology.
Resumo:
Background: Early descriptive work and controlled family and adoption studies support the hypothesis that a range of personality and nonschizophrenic psychotic disorders aggregate in families of schizophrenic probands. Can we validate, using molecular polygene scores from genome-wide association studies (GWAS), this schizophrenia spectrum? Methods: The predictive value of polygenic findings reported by the Psychiatric GWAS Consortium (PGC) was applied to 4 groups of relatives from the Irish Study of High-Density Schizophrenia Families (ISHDSF; N = s) differing on their assignment within the schizophrenia spectrum. Genome-wide single nucleotide polymorphism data for affected and unaffected relatives were used to construct per-individual polygene risk scores based on the PGC stage-I results. We compared mean polygene scores in the ISHDSF with mean scores in ethnically matched population controls (N = 929). Results: The schizophrenia polygene score differed significantly across diagnostic categories and was highest in those with narrow schizophrenia spectrum, lowest in those with no psychiatric illness, and in-between in those classified in the intermediate, broad, and very broad schizophrenia spectrum. Relatives of all of these groups of affected subjects, including those with no diagnosis, had schizophrenia polygene scores significantly higher than the control sample. Conclusions: In the relatives of high-density families, the observed pattern of enrichment of molecular indices of schizophrenia risk suggests an underlying, continuous liability distribution and validates, using aggregate common risk alleles, a genetic basis for the schizophrenia spectrum disorders. In addition, as predicted by genetic theory, nonpsychotic members of multiply-affected schizophrenia families are significantly enriched for replicated, polygenic risk variants compared with the general population.
Resumo:
The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Resumo:
Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.