890 resultados para Model Participation Rules
Resumo:
The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.
Resumo:
Background: We report an analysis of a protein network of functionally linked proteins, identified from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high probability of correctly identifying known functional links. Results: The eukaryotic correlated evolution network we derive displays the familiar power law scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species. We find that the connectivity distribution of proteins at the point they arise on the tree and join the network follows a power law, as does the connectivity distribution of proteins at the time they are lost from the network. Proteins resident in the network acquire connections over time, but we find no evidence that 'preferential attachment' - the phenomenon of newly acquired connections in the network being more likely to be made to proteins with large numbers of connections - influences the network structure. We derive a 'variable rate of attachment' model in which proteins vary in their propensity to form network interactions independently of how many connections they have or of the total number of connections in the network, and show how this model can produce apparent power-law scaling without preferential attachment. Conclusion: A few simple rules can explain the topological structure and evolutionary changes to protein-interaction networks: most change is concentrated in satellite proteins of low connectivity and small phenotypic effect, and proteins differ in their propensity to form attachments. Given these rules of assembly, power law scaled networks naturally emerge from simple principles of selection, yielding protein interaction networks that retain a high-degree of robustness on short time scales and evolvability on longer evolutionary time scales.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
This paper demonstrates that recent influential contributions to monetary policy imply an emerging consensus whereby neither rigid rules nor complete discretion are found optimal. Instead, middle-ground monetary regimes based on rules (operative under 'normal' circumstances) to anchor inflation expectations over the long run, but designed with enough flexibility to mitigate the short-run effect of shocks (with communicated discretion in 'exceptional' circumstances temporarily overriding these rules), are gaining support in theoretical models and policy formulation and implementation. The opposition of 'rules versus discretion' has, thus, reappeared as the synthesis of 'rules cum discretion', in essence as inflation-forecast targeting. But such synthesis is not without major theoretical problems, as we argue in this contribution. Furthermore, the very recent real-world events have made it obvious that the inflation targeting strategy of monetary policy, which rests upon the new consensus paradigm in modern macroeconomics is at best a 'fair weather' model. In the turbulent economic climate of highly unstable inflation, deep financial crisis and world-wide, abrupt economic slowdown nowadays this approach needs serious rethinking to say the least, if not abandoning it altogether
Resumo:
The misuse of Personal Protective Equipment results in health risk among smallholders in developing countries, and education is often proposed to promote safer practices. However, evidence point to limited effects of education. This paper presents a System Dynamics model which allows the identification of risk-minimizing policies for behavioural change. The model is based on the IAC framework and survey data. It represents farmers' decision-making from an agent-oriented standpoint. The most successful intervention strategy was the one which intervened in the long term, targeted key stocks in the systems and was diversified. However, the results suggest that, under these conditions, no policy is able to trigger a self sustaining behavioural change. Two implementation approaches were suggested by experts. One, based on constant social control, corresponds to a change of the current model's parameters. The other, based on participation, would lead farmers to new thinking, i.e. changes in their decision-making structure.
Resumo:
Cross-bred cow adoption is an important and potent policy variable precipitating subsistence household entry into emerging milk markets. This paper focuses on the problem of designing policies that encourage and sustain milkmarket expansion among a sample of subsistence households in the Ethiopian highlands. In this context it is desirable to measure households’ ‘proximity’ to market in terms of the level of deficiency of essential inputs. This problem is compounded by four factors. One is the existence of cross-bred cow numbers (count data) as an important, endogenous decision by the household; second is the lack of a multivariate generalization of the Poisson regression model; third is the censored nature of the milk sales data (sales from non-participating households are, essentially, censored at zero); and fourth is an important simultaneity that exists between the decision to adopt a cross-bred cow, the decision about how much milk to produce, the decision about how much milk to consume and the decision to market that milk which is produced but not consumed internally by the household. Routine application of Gibbs sampling and data augmentation overcome these problems in a relatively straightforward manner. We model the count data from two sites close to Addis Ababa in a latent, categorical-variable setting with known bin boundaries. The single-equation model is then extended to a multivariate system that accommodates the covariance between crossbred-cow adoption, milk-output, and milk-sales equations. The latent-variable procedure proves tractable in extension to the multivariate setting and provides important information for policy formation in emerging-market settings
Resumo:
We present a model of market participation in which the presence of non-negligible fixed costs leads to random censoring of the traditional double-hurdle model. Fixed costs arise when household resources must be devoted a priori to the decision to participate in the market. These costs, usually of time, are manifested in non-negligible minimum-efficient supplies and supply correspondence that requires modification of the traditional Tobit regression. The costs also complicate econometric estimation of household behavior. These complications are overcome by application of the Gibbs sampler. The algorithm thus derived provides robust estimates of the fixed-costs, double-hurdle model. The model and procedures are demonstrated in an application to milk market participation in the Ethiopian highlands.
Resumo:
Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.
Resumo:
There are several scoring rules that one can choose from in order to score probabilistic forecasting models or estimate model parameters. Whilst it is generally agreed that proper scoring rules are preferable, there is no clear criterion for preferring one proper scoring rule above another. This manuscript compares and contrasts some commonly used proper scoring rules and provides guidance on scoring rule selection. In particular, it is shown that the logarithmic scoring rule prefers erring with more uncertainty, the spherical scoring rule prefers erring with lower uncertainty, whereas the other scoring rules are indifferent to either option.
Resumo:
Purpose – The purpose of this paper is to investigate to what extent one can apply experiential learning theory (ELT) to the public-private partnership (PPP) setting in Russia and to draw insights regarding the learning cycle ' s nature. Additionally, the paper assesses whether the PPP case confirms Kolb ' s ELT. Design/methodology/approach – The case study draws upon primary data which the authors collected by interviewing informants including a PPP operator ' s managers, lawyers from Russian law firms and an expert from the National PPP Centre. The authors accomplished data source triangulation in order to ensure a high degree of research validity. Findings – Experiential learning has resulted in a successful and a relatively fast PPP project launch without the concessionary framework. The lessons learned include the need for effective stakeholder engagement; avoiding being stuck in bureaucracy such as collaboration with Federal Ministries and anti-trust agency; avoiding application for government funding as the approval process is tangled and lengthy; attracting strategic private investors; shaping positive public perception of a PPP project; and making continuous efforts in order to effectively mitigate the public acceptance risk. Originality/value – The paper contributes to ELT by incorporating the impact of social environment in the learning model. Additionally, the paper tests the applicability of ELT to learning in the complex organisational setting, i.e., a PPP.
Resumo:
In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.
Resumo:
Temporomandibular disorders represent one of the major challenges in dentistry therapeutics. This study was undertaken to evaluate the time course of carrageenan-induced inflammation in the rat temporomandibular joint (TMJ) and to investigate the role of tachykinin NK(1) receptors. Inflammation was induced by a single intra-articular (i.art.) injection of carrageenan into the left TMJ (control group received sterile saline). Inflammatory parameters such as plasma extravasation, leukocyte influx and mechanical allodynia (measured as the head-withdrawal force threshold) and TNF alpha and IL-1 beta concentrations were measured in the TMJ lavages at selected time-points. The carrageenan-induced responses were also evaluated after treatment with the NK(1) receptor antagonist SR140333. The i.art. injection of carrageenan into the TMJ caused a time-dependent plasma extravasation associated with mechanical allodynia, and a marked neutrophil accumulation between 4 and 24 h. Treatment with SR140333 substantially inhibited the increase in plasma extravasation and leukocyte influx at 4 and 24 h, as well as the production of TNF alpha and IL-1 beta into the joint cavity, but failed to affect changes in head-withdrawal threshold. The results obtained from the present TMJ-arthritis model provide, for the first time, information regarding the time course of this experimental inflammatory process. In addition, our data show that peripheral NK(1) receptors mediate the production of both TNF alpha and IL-1 beta in the TMJ as well as some of the inflammatory signs, such as plasma extravasation and leukocyte influx, but not the nociceptive component. 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
We use QCD sum rules to study the recently observed meson Z(+)(4430), considered as a D*D-1 molecule with J(P) = 0(-). We consider the contributions of condensates up to dimension eight and work at leading order in alpha(s). We get m(Z) = (4.40 +/- 0.10) GeV in a very good agreement with the experimental value. We also make predictions for the analogous mesons Z(s) and Z(bb) considered as D-s*D-1 and B*B-1 molecules, respectively. For Z(s) we predict mZ(s) = (4.70 +/- 0.06) GeV, which is above the D-s* D-1 threshold, indicating that it is probably a very broad state and, therefore, difficult to observe experimentally. For Z(bb) we predict m(Zbb) = (10.74 +/- 0.12) GeV, in agreement with quark model predictions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An important feature of Axelrod`s model for culture dissemination or social influence is the emergence of many multicultural absorbing states, despite the fact that the local rules that specify the agents interactions are explicitly designed to decrease the cultural differences between agents. Here we re-examine the problem of introducing an external, global interaction-the mass media-in the rules of Axelrod`s model: in addition to their nearest neighbors, each agent has a certain probability p to interact with a virtual neighbor whose cultural features are fixed from the outset. Most surprisingly, this apparently homogenizing effect actually increases the cultural diversity of the population. We show that, contrary to previous claims in the literature, even a vanishingly small value of p is sufficient to destabilize the homogeneous regime for very large lattice sizes.