863 resultados para Mitochondrial Pathology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe destruction of intrinsic cardiac nerves has been reported in experimental acute Chagas myocarditis, followed by extensive regeneration during the chronic phase of the infection. To further study this subject, the sympathetic and para-sympathetic intracardiac nerves of mice infected with a virulent Trypanosoma cruzi strain were analyzed, during acute and chronic infection, by means of histological, histochemical, morphometric and electron microscopic techniques. No evidences of destructive changes were apparent. Histochemical demonstration for acetylcholinesterase and catecholamines did not reveal differences in the amount and distribution of intracardiac nerves, in mice with acute and chronic Chagas myocarditis or in non-infected controls. Mild, probably reversible ultrastructural neural changes were occasionally present, especially during acute myocarditis. Intrinsic nerves appeared as the least involved cardiac structure during the course of experimental Chagas disease in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crizotinib is a first-in-class oral anaplastic lymphoma kinase (ALK) inhibitor targeting ALK-rearranged non-small-cell lung cancer. The therapy was approved by the US FDA in August 2011 and received conditional marketing approval by the European Commission in October 2012 for advanced non-small-cell lung cancer. A break-apart FISH-based assay was jointly approved with crizotinib by the FDA. This assay and an immunohistochemistry assay that uses a D5F3 rabbit monoclonal primary antibody were also approved for marketing in Europe in October 2012. While ALK rearrangement has relatively low prevalence, a clinical benefit is exhibited in more than 85% of patients with median progression-free survival of 8-10 months. In this article, the authors summarize the therapy and alternative test strategies for identifying patients who are likely to respond to therapy, including key issues for effective and efficient testing. The key economic considerations regarding the joint companion diagnostic and therapy are also presented. Given the observed clinical benefit and relatively high cost of crizotinib therapy, companion diagnostics should be evaluated relative to response to therapy versus correlation alone whenever possible, and both high inter-rater reliability and external quality assessment programs are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidence of neurodegenerative disease like Parkinson's disease and Alzheimer's disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimer's disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation related to the frequency and pathology of Heterakis gallinarum and pathology of Heterakis isolonche in pheasants from Rio de Janeiro, Brazil was conducted by means of clinical examinations, necropsies, and histopathological analysis in 50 ring-necked pheasants from backyard flocks of 11 localities; also, histological sections of caeca of golden pheasants deposited in the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC) have been considered in the present study. During necropsies, only specimens of H. gallinarum were recovered with a prevalence of 90%, mean intensity of 81.9 and range of infection of 1-413. Gross lesions were characterized by congestion, thickening, petechial haemorrhages of the mucosa, intussusception, and nodules in the cecal wall. Under microscopy, chronic difuse typhlitis, haemosiderosis, granulomas with necrotic center in the submucosa and leiomyomas in the submucosa, muscular and serosa associated with immature H. gallinarum worms were observed. The examination of histological sections previously deposited in the CHIOC, revealed more severe alterations associated with concomitant infections with H. gallinarum and H. isolonche in golden pheasants, and were characterized by several necrotic areas with cholesterol clefts in the submucosa, giant cell granulomas in the submucosa, and serosa centralized by necrosis and worm sections and neoplastic nodules in the muscular and submucosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is related to the frequency of infection and to the gross and microscopic lesions associated to the presence of trichurid worms in 50 ring-necked pheasants (Phasianus colchicus) from backyard flocks in the state of Rio de Janeiro, Brazil. In the investigated birds, the overall infection rate was of 74%, with the presence of Eucoleus perforans with 72% of prevalence and 21.2 of mean intensity, in the esophageal and crop mucosa and rarely in the junction of the proventriculus and esophagus, E. annulatus with 2% and 3 in the crop mucosa, Capillaria phasianina, with 12% and 4.3 in the cecum and small intestine and Baruscapillaria obsignata, for the first time referred in this host, with 2% and 1 in the small intestine. Clinical signs were absent. The gross lesions observed in the crop and esophagus of 14 (38.9%) pheasants parasitized with E. perforans were thickening, small nodules, congestion, and petechial haemorrhages in the mucosa. These birds presented a mean infection of 37.5 and a range of infection of 10-82. The microscopic lesions revealed chronic esophagitis with diffuse inflammatory process in the lamina propria characterized mostly by a mononuclear cell infiltrate and also with the presence of granulocytes. In the case of the parasitism of pheasants with C. phasianina, the gross lesions were absent; microscopic lesions were characterized by chronic typhlitis with mononuclear infiltrate. Gross and microscopic lesions were absent in the pheasants parasitized with E. annulatus and B. obsignata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kidney trematode Paratanaisia bragai is reported for the first time parasitizing the ring-necked pheasant (Phasianus colchicus L., 1758) and the pathological alterations associated to the parasitism are referred on the basis of 50 specimens of this bird from backyard flocks in 11 counties of the state of Rio de Janeiro, Brazil after clinical examination, necropsies, and histopathological analysis. The counting of the kidney flukes was based on worms recovered from one of the kidneys, since the other was fixed in 10% formalin and then routinely processed for histopathological procedures. The prevalence of P. bragai was of 22%, with a mean intensity of 44.3, mean abundance of 9.7, and range of infection of 3-153. Parasitized birds did not present with clinical signs and kidney gross lesions. Microscopic lesions were mild and characterized by dilatation of the renal medullary collecting ducts, occasional flattening of the lining epithelium of the ducts and inflammatory reaction of variable intensity with granulocytes around the ureter branches and medullary collecting ducts. The severity and pattern of the microscopic lesions seem not to be associated to the size of the worm burden and could be related to the mechanic action of the parasites, without traumatism, in despite of the presence of the tegumentar spines in specimens of P. bragai.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The avian eye trematode Philophthalmus lachrymosus Braun, 1902 is for the first time referred naturally occurring in a non-human mammalian host. Previously, natural infections with P. lachrymosus and other species of Philophthalmus have been occasionally reported from man, with few data on experimental infections of non-human mammals. Results presented here are related to the report of two cases of philophthalmosis due to natural infections of wild Brazilian capybaras, Hydrochaeris hydrochaeris L., 1766 with P. lachrymosus and associated pathology. Clinical signs, gross and microscopic lesions as well as new morphometric data on the parasite are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial cytochrome b DNA sequences for 62 Triatoma infestans were analyzed to determine the degree of genetic variation present in populations of this insect in the northwest region of Chuquisaca, Bolivia. A total of seven haplotypes were detected in the localities sampled. The phylogenetic relationship and population genetic structure of the haplotypes found in this region, indicate that there is greater variation in this relatively small region of Bolivia than what has been previously reported by studies using the same gene fragment, for more distant geographic areas of this country. In addition, a comparison of rural and peri-urban localities, indicate that there is no difference in the genetic variation of T. infestans between these two environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.