936 resultados para Mirror neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron-specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated oxidative stress and alteration in antioxidant systems, including glutathione (GSH) decrease, are observed in schizophrenia. Genetic and functional data indicate that impaired GSH synthesis represents a susceptibility factor for the disorder. Here, we show that a genetically compromised GSH synthesis affects the morphological and functional integrity of hippocampal parvalbumin-immunoreactive (PV-IR) interneurons, known to be affected in schizophrenia. A GSH deficit causes a selective decrease of PV-IR interneurons in CA3 and dendate gyrus (DG) of the ventral but not dorsal hippocampus and a concomitant reduction of beta/gamma oscillations. Impairment of PV-IR interneurons emerges at the end of adolescence/early adulthood as oxidative stress increases or cumulates selectively in CA3 and DG of the ventral hippocampus. Such redox dysregulation alters stress and emotion-related behaviors but leaves spatial abilities intact, indicating functional disruption of the ventral but not dorsal hippocampus. Thus, a GSH deficit affects PV-IR interneuron's integrity and neuronal synchrony in a region- and time-specific manner, leading to behavioral phenotypes related to psychiatric disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism is a neurodevelopmental disorder characterized by deficits in social interaction and social communication, as well as by the presence of repetitive and stereotyped behaviors and interests. Brodmann areas 44 and 45 in the inferior frontal cortex, which are involved in language processing, imitation function, and sociality processing networks, have been implicated in this complex disorder. Using a stereologic approach, this study aims to explore the presence of neuropathological differences in areas 44 and 45 in patients with autism compared to age- and hemisphere-matched controls. Based on previous evidence in the fusiform gyrus, we expected to find a decrease in the number and size of pyramidal neurons as well as an increase in volume of layers III, V, and VI in patients with autism. We observed significantly smaller pyramidal neurons in patients with autism compared to controls, although there was no difference in pyramidal neuron numbers or layer volumes. The reduced pyramidal neuron size suggests that a certain degree of dysfunction of areas 44 and 45 plays a role in the pathology of autism. Our results also support previous studies that have shown specific cellular neuropathology in autism with regionally specific reduction in neuron size, and provide further evidence for the possible involvement of the mirror neuron system, as well as impairment of neuronal networks relevant to communication and social behaviors, in this disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological contribution of glucose in thermoregulation is not completely established nor whether this control may involve a regulation of the melanocortin pathway. Here, we assessed thermoregulation and leptin sensitivity of hypothalamic arcuate neurons in mice with inactivation of glucose transporter type 2 (Glut2)-dependent glucose sensing. Mice with inactivation of Glut2-dependent glucose sensors are cold intolerant and show increased susceptibility to food deprivation-induced torpor and abnormal hypothermic response to intracerebroventricular administration of 2-deoxy-d-glucose compared to control mice. This is associated with a defect in regulated expression of brown adipose tissue uncoupling protein I and iodothyronine deiodinase II and with a decreased leptin sensitivity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons, as observed during the unfed-to-refed transition or following i.p. leptin injection. Sites of central Glut-2 expression were identified by a genetic tagging approach and revealed that glucose-sensitive neurons were present in the lateral hypothalamus, the dorsal vagal complex, and the basal medulla but not in the arcuate nucleus. NPY and POMC neurons were, however, connected to nerve terminals from Glut2-expressing neurons. Thus, our data suggest that glucose controls thermoregulation and the leptin sensitivity of NPY and POMC neurons through activation of Glut2-dependent glucose-sensing neurons located outside of the arcuate nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 μM for 1 h led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of immunoreactivity for the neurofilament triplet class of intermediate filament proteins was examined in the hippocampus of young, adult and elderly control cases and compared to that of Alzheimer's disease cases. In a similar fashion to non-human mammalian species, pyramidal neurons in the CA1 region showed a very low degree of neurofilament triplet immunoreactivity in the three younger control cases examined. However, in the other control cases of 49 years of age and older, many CA1 pyramidal neurons showed elevated neurofilament immunoreactivity. In the Alzheimer's disease cases, most of the surviving CA1 neurons showed intense labeling for the neurofilament triplet proteins, with many of these neurons giving off abnormal "sprouting" processes. Double labeling demonstrated that many of these neurons contained tangle-like or granular material that was immunoreactive for abnormal forms of tau and stained with thioflavine S, indicating that these neurons are in a transitional degenerative stage. An antibody to phosphorylated neurofilament proteins labeled a subset of neurofibrillary tangles in the Alzheimer's disease cases. However, following formic acid pre-treatment, the number of neurofibrillary tangles showing phosphorylated neurofilament protein immunoreactivity increased, with double labeling confirming that all of the tau-immunoreactive neurofibrillary tangles were also immunoreactive for phosphorylated neurofilament proteins. Immunoblotting demonstrated that there was a proportionately greater amount of the neurofilament triplet subunit proteins in hippocampal tissue from Alzheimer's disease cases as compared to controls. These results indicate that there are changes in the cytoskeleton of CA1 neurons associated with age which are likely to involve an increase in the level of neurofilament proteins and may be a predisposing factor contributing towards their high degree of vulnerability in degenerative conditions such as Alzheimer's disease. The cellular factors affecting hippocampal neurons during aging may be potentiated in Alzheimer's disease to result in even higher levels of intracellular neurofilament proteins and the progressive alterations of neurofilaments and other cytoskeletal proteins that finally results in neurofibrillary tangle formation and cellular degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with Down syndrome (DS) present important motor deficits that derive from altered motor development of infants and young children. DYRK1A, a candidate gene for DS abnormalities has been implicated in motor function due to its expression in motor nuclei in the adult brain, and its overexpression in DS mouse models leads to hyperactivity and altered motor learning. However, its precise role in the adult motor system, or its possible involvement in postnatal locomotor development has not yet been clarified. During the postnatal period we observed time-specific expression of Dyrk1A in discrete subsets of brainstem nuclei and spinal cord motor neurons. Interestingly, we describe for the first time the presence of Dyrk1A in the presynaptic terminal of the neuromuscular junctions and its axonal transport from the facial nucleus, suggesting a function for Dyrk1A in these structures. Relevant to DS, Dyrk1A overexpression in transgenic mice (TgDyrk1A) produces motor developmental alterations possibly contributing to DS motor phenotypes and modifies the numbers of motor cholinergic neurons, suggesting that the kinase may have a role in the development of the brainstem and spinal cord motor system.