940 resultados para Micronutrient and fertilization
Resumo:
Objective: To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage.
Resumo:
The aim of this study was to determine bow nutrient intake is affected by a short-term phytoestrogen-rich diet. Ten healthy volunteers consumed 100 g soya chunks, 150 g lentils, and 250 g kidney beans daily for 3 days. Urine was collected during the 2 days before, 3 intervention days, and 2 days after the intervention and analyzed for phytoestrogen status. Subjects filled in food diaries throughout the study period. Urinary daidzein, but not equol and enterolactone, levels increased during the 7-day period. There was no change in energy, protein, sugar, or total fat intake, but an increase in carbohydrate, fiber, and starch intake. There was a change in the distribution of fat intake with a fall in saturated fat and cholesterol intake. Iron intake significantly increased, although vitamin B-12 fell significantly. The long-term effects of this diet and the associated health benefits of these changes require further study. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.
Resumo:
Age-related maculopathy (ARM) is a common clinical entity. The late-stage manifestations of ARM, which are known as age-related macular degeneration (AMD), have devastating consequences for vision. Various risk factors have been identified in the development of the condition, which are consistent with the premise that oxidative stress plays an important role in its pathogenesis. Thus, the possibility that antioxidant balance can be manipulated through diet or supplementation has created much interest. Associations between diet and nutrition and the clinical features of ARM have been described. Scrutiny of the literature shows consistency in the report of notable reductions in serum micronutrients in wet AMD, however, the evidence for causation is still circumstantial. In this comprehensive review of the clinical literature, we have assessed the evidence for a link between diet and nutrition as risk factors for the development of ARM and AMD. All published case control, population-based, and interventional studies on ARM were examined. Although initial support appeared to be moderate and somewhat contradictory, the evidence that lifetime oxidative stress plays an important role in the development of ARM is now compelling. The positive outcomes in the Age-Related Eye Diseases Study, a major controlled clinical trial, have given hope that modulation of the antioxidant balance through supplementation can help prevent progression of ARM to AMD.
Resumo:
Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes.
Resumo:
SCOPE: Aflatoxin exposure coincides with micronutrient deficiencies in developing countries. Animal feeding studies have postulated that aflatoxin exposure may be exacerbating micronutrient deficiencies. Evidence available in human subjects is limited and inconsistent. The aim of the study was to investigate the relationship between aflatoxin exposure and micronutrient status among young Guinean children.
METHOD AND RESULTS: A total of 305 children (28.8 ± 8.4 months) were recruited at groundnut harvest (rainy season), of which 288 were followed up 6 months later post-harvest (dry season). Blood samples were collected at each visit. Aflatoxin-albumin adduct levels were measured by ELISA. Vitamin A, vitamin E and β-carotene concentrations were measured using HPLC methods. Zinc was measured by atomic absorption spectroscopy. Aflatoxin exposure and micronutrient deficiencies were prevalent in this population and were influenced by season, with levels increasing between harvest and post-harvest. At harvest, children in the highest aflatoxin exposure group, compared to the lowest, were 1.98 (95%CI: 1.00, 3.92) and 3.56 (95%CI: 1.13, 11.15) times more likely to be zinc and vitamin A deficient.
CONCLUSION: Although children with high aflatoxin exposure levels were more likely to be zinc and vitamin A deficient, further research is necessary to determine a cause and effect relationship.
Resumo:
BACKGROUND: Observational studies suggest that patients with heart failure have a tendency to a reduced status of a number of micronutrients and that this may be associated with an adverse prognosis. A small number of studies also suggest that patients with heart failure may have reduced dietary intake of micronutrients, a possible mechanism for reduced status.
OBJECTIVE: The aims of this study were to assess dietary micronutrient intake and micronutrient status in a group of patients with heart failure.
METHODS: Dietary intake was assessed in 79 outpatients with chronic stable heart failure with a reduced ejection fraction using a validated food frequency questionnaire. Blood concentrations of a number of micronutrients, including vitamin D, were measured in fasting blood samples, drawn at the time of food frequency questionnaire completion.
RESULTS: More than 20% of patients reported intakes less than the reference nutrient intake or recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, and iodine. More than 5% of patients reported intakes less than the lower reference nutrient intake or minimum recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, selenium, and iodine. Vitamin D deficiency (plasma total 25-hydroxy-vitamin D concentration <50 nmol/L) was observed in 75.6% of patients.
CONCLUSIONS: Vitamin D deficiency was common in this group of patients with heart failure. Based on self-reported dietary intake, a substantial number of individuals may not have been consuming enough vitamin D and a modest number of individuals may not have been consuming enough riboflavin, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, or iodine to meet their dietary needs.
Resumo:
From the present study, it is clear that all the three metals, selenium, molybdenum and cobalt have significant effect on the antioxidant status of the shrimps. Selenium and molybdenum were observed to induce peroxidative damage at elevated levels. But at the same level, cobalt did not show such an effect. Selenium was found to be growth promoting at lower levels of dietary supplementation. Even though low levels of dietary selenium had a protective effect against the lipid peroxidation, the present study indicates that high levels of dietary selenium could promote lipid peroxidation. The selenium-dependent antioxidant enzyme, GPx behaved differently in muscle and hepatopancreas. A high concentration of selenium was required for the active expression of the enzyme in the muscle, where as in hepatopancreas maximum activity was observed at lower selenium concentration. Selenium supplementation had a positive effect on GSH concentration. The other antioxidant enzymes such as GST, SOD and CAT showed enhanced activity at higher concentration of selenium. Molybdenum supplementation significantly reduced the free radical scavenger enzymes SOD and CAT. This resulted in enhanced lipid peroxidation in tissues. The activity of antioxidant enzyme GPx and the concentration of the substrate for the enzyme, GSH also were lower at elevated levels of molybdenum supplementation. In addition to this amino acids and fatty acids were also altered in molybdenum supplemented groups. In trace amounts, dietary molybdenum exerts a beneficial effect on the growth and also in the activities of the enzymes XO and SO. At the same time it also indicates a possibility of oxidative damage as a result of the peroxidation caused by the activities of the enzymes SO and XO at elevated concentrations of molybdenum is also indicated. The absorption of various trace elements was also altered by molybdenum supplementation.Among the three metals studied, cobalt was the least toxic one at the administered levels. But this metal has a significant effect on the lipid content, amino acid composition, cholesterol levels and phospholipid levels. Increased growth was also observed as a result of cobalt supplementation in shrimps. The antioxidant system of the animal was activated by dietary cobalt. Tissue levels of the trace metals were also found to be altered in cobalt supplemented groups of shrimps.These studies, thus shows that influence of dietary trace metals calls for more detailed studies in farmed shrimp. They may hold the key to growth and even disease resistance in shrimp. But this still remains as a virgin field which demands more attention, especially in view of the increasing importance of shrimp farming.
Resumo:
Effective use and recycling of manures together with occasional and judicious use of supplementary fertilizing materials forms the basis for management of phosphorus (P) and potassium (K) within organic farming systems. Replicated field trials were established at three sites across the UK to compare the supply of P and K to grass-clover swards cut for silage from a range of fertilizing materials, and to assess the usefulness of routine soil tests for P and K in organic farming systems. None of the fertilizing materials (farmyard manure, rock phosphate, Kali vinasse, volcanic tuff) significantly increased silage yields, nor was P offtake increased. However, farmyard manure and Kali vinasse proved effective sources of K to grass and clover in the short to medium term. Available P (measured as Olsen-P) showed no clear relationship with crop P offtake in these trials. In contrast, available K (measured by ammonium nitrate extraction) proved a useful measurement to predict K availability to crops and support K management decisions.