992 resultados para Micron Scale
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
Every year a number of pedestrians are struck by trains resulting in death and serious injury. While much research has been conducted on train-vehicle collisions, very little is currently known about the aetiology of train-pedestrian collisions. To date, scant research has been undertaken to investigate the demographics of rule breakers, the frequency of deliberate violation versus error making and the influence of the classic deterrence approach on subsequent behaviours. Aim This study aimed to to identify pedestrians’ self-reported reasons for engaging in violations at crossing, the frequency and nature of rule breaking and whether the threat of sanctions influence such events. Method A questionnaire was administered to 511 participants of all ages. Results Analysis revealed that pedestrians (particularly younger groups) were more likely to commit deliberate violations rather than make crossing errors e.g., mistakes. The most frequent reasons given for deliberate violations were participants were running late and did not want to miss their train or participants believed that the gate was taking too long to open so may be malfunctioning. In regards to classical deterrence, an examination of the perceived threat of being apprehended and fined for a crossing violation revealed participants reported the highest mean scores for swiftness of punishment, which suggests they were generally aware that they would receive an “on the spot” fine. However, the overall mean scores for certainty and severity of sanctions (for violating the rules) indicate that the participants did not perceive the certainty and severity of sanctions as very high. This paper will further discuss the research findings in regards to the development of interventions designed to improve pedestrian crossing safety.
Resumo:
Portable water-filled barriers (PWFB) are roadside structures used to separate moving traffic from work-zones. Numerical PWFB modelling is preferred in the design stages prior to actual testing. This paper aims to study the fluid-structure interaction of PWFB under vehicular impact using several methods. The strategy to treat water as non-structural mass was proposed and the errors were investigated. It was found that water can be treated with the FEA-NSM model for velocities higher than 80kmh-1. However, full SPH/FEA model is still the best treatment for water and necessary for lower impact velocities. The findings in this paper can be used as guidelines for modelling and designing PWFB.
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A series of large-scale tests were performed in order to provide experimental results for verification of the new analytical models. Each of the test frames comprised non-compact sections, and exhibited significant local buckling behaviour prior to failure. This paper presents details of the test program including the test specimens, set-up and instrumentation, procedure, and results.
Resumo:
An experiment in large scale, live, game design and public performance, bringing together participants from across the creative arts to design, deliver and document a project that was both a cooperative learning experience and an experimental public performance. The four month project, funded by the Edge Digital Centre, culminated into a 24 hour ARG event involving over 100 participants in December 2012. Using the premise of a viral outbreak, young enthusiasts auditioned for the roles of Survivor, Zombie, Medic and Military. The main objective was for the Survivors to complete a series of challenges over 24 hours, while the other characters fulfilled their opposing objectives of interference and sabotage supported by both scripted and free-form scenarios staged in constructed scenes throughout the venues. The event was set in the State Library of Queensland and the Edge Digital Centre who granted the project full access, night and day to all areas including public, office and underground areas. These venues were transformed into cinematic settings full of interactive props and various audio-visual effects. The ZomPoc Project was an innovative experiment in writing and directing a large scale, live, public performance, bringing together participants from across the creative industries. In order to design such an event a number of innovative resources were developed exploiting techniques of game design, theatre, film, television and tangible media production. A series of workshops invited local artists, scientists, technicians and engineers to find new ways of collaborating to create networked artifacts, experimental digital works, robotic props, modular set designs, sound effects and unique costuming guided by an innovative multi-platform script developed by Deb Polson. The result of this collaboration was the creation of innovative game and set props, both atmospheric and interactive. Such works animated the space, presented story clues and facilitated interactions between strangers who found themselves sharing a unique experience in unexpected places.
Resumo:
Objective To compare the diagnostic accuracy of the interRAI Acute Care (AC) Cognitive Performance Scale (CPS2) and the Mini-Mental State Examination (MMSE), against independent clinical diagnosis for detecting dementia in older hospitalized patients. Design, Setting, and Participants The study was part of a prospective observational cohort study of patients aged ≥70 years admitted to four acute hospitals in Queensland, Australia, between 2008 and 2010. Recruitment was consecutive and patients expected to remain in hospital for ≥48 hours were eligible to participate. Data for 462 patients were available for this study. Measurements Trained research nurses completed comprehensive geriatric assessments and administered the interRAI AC and MMSE to patients. Two physicians independently reviewed patients’ medical records and assessments to establish the diagnosis of dementia. Indicators of diagnostic accuracy included sensitivity, specificity, predictive values, likelihood ratios and areas under receiver (AUC) operating characteristic curves. Results 85 patients (18.4%) were considered to have dementia according to independent clinical diagnosis. The sensitivity of the CPS2 [0.68 (95%CI: 0.58–0.77)] was not statistically different to the MMSE [0.75 (0.64–0.83)] in predicting physician diagnosed dementia. The AUCs for the 2 instruments were also not statistically different: CPS2 AUC = 0.83 (95%CI: 0.78–0.89) and MMSE AUC = 0.87 (95%CI: 0.83–0.91), while the CPS2 demonstrated higher specificity [0.92 95%CI: 0.89–0.95)] than the MMSE [0.82 (0.77–0.85)]. Agreement between the CPS2 and clinical diagnosis was substantial (87.4%; κ=0.61). Conclusion The CPS2 appears to be a reliable screening tool for assessing cognitive impairment in acutely unwell older hospitalized patients. These findings add to the growing body of evidence supporting the utility of the interRAI AC, within which the CPS2 is embedded. The interRAI AC offers the advantage of being able to accurately screen for both dementia and delirium without the need to use additional assessments, thus increasing assessment efficiency.
Resumo:
In most of the advanced economies, students are losing interest in careers especially in en¬gineering and related industries. Hence, western economies are confronting a critical skilled labour shortage in areas of technology, science and engineering. Decisions about career pathways are made as early as the primary years of schooling and hence cooperation be¬tween industry and schools to attract students to the professions is crucial. The aim of this paper is to document how the organisational and institutional elements of one industry-school partnerships initiative — The Gateway Schools Program — contribute to productive knowledge sharing and networking. In particular this paper focuses on an initiative of an Australian State government in response to a perceived crisis around the skills shortage in an economy transitioning from a localised to a global knowledge production economy. The Gateway Schools initiative signals the first sustained attempt in Australia to incorporate schools into production networks through strategic partnerships linking them to partner organisations at the industry level. We provide case examples of how four schools opera¬tionalise the partnerships with the minerals and energy industries and how these partner¬ships as knowledge assets impact the delivery of curriculum and capacity building among teachers. Our ultimate goal is to define those characteristics of successful partnerships that do contribute to enhanced interest and engagement by students in those careers that are currently experiencing critical shortages.
Resumo:
The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks...
Resumo:
Statistical methodology was applied to a survey of time-course incidence of four viruses (alfalfa mosaic virus, clover yellow vein virus, subterranean clover mottle virus and subterranean clover red leaf virus) in improved pastures in southern regions of Australia. -from Authors
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.
Resumo:
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.
Resumo:
Purpose This paper develops and estimates a model to measure consumer perceptions of trade show effectiveness. Design/methodology/approach Data were collected at three separate B2C trade shows. Study 1 (n=47) involved field interviews with data subjected to qualitative item generation and content analysis. Study 2 data (n=147) were subjected to exploratory factor analysis and item-total correlation to identify a preliminary factor structure for the effectiveness construct and to test for reliability. In Study 3 (n=592), confirmatory factor analysis was undertaken to more rigorously test the factor structure and generalise across industries. Validity testing was also performed. Findings A three-dimensional factor structure for assessing consumer visitors’ perceptions of trade show effectiveness was produced incorporating research, operational, and entertainment components. Research limitations/implications Data were collected in Australia and results may not generalise across cultural boundaries. Practical implications The resulting measurement model may be used as a reliable post-hoc diagnostic tool to identify areas of trade show effectiveness where specific performance improvements are needed. Results indicate that exhibitors and organisers of B2C trade shows should consider effectiveness as a multidimensional phenomenon with entertainment, product / industry research, and the facilitation of purchase decision-making processes and problem resolution being key objectives for consumer attendees. These elements of effectiveness should each be addressed by exhibitors and organisers in planning their displays and events. Originality/value This is the first study to provide an empirically valid model for assessing trade show effectiveness from the consumer visitor’s perspective.