913 resultados para Metal ion
Resumo:
Tau is mainly distributed in cytoplasm and also found to be localized in the nucleus. There is limited data on DNA binding potential of Tau.We provide novel evidence on nicking of DNA by Tau. Tau nicks the supercoiled DNA leading to open circular and linear forms. The metal ion magnesium (a co-factor for endonuclease) enhanced the Tau DNA nicking ability, while an endonuclease specific inhibitor,aurinetricarboxylic acid (ATA) inhibited the Tau DNA nicking ability Further, we also evidenced that Tau induces B-C-A mixed conformational transition in DNA and also changes DNA stability. Tau-scDNA complex is more sensitive to DNAse I digestion indicating stability changes in DNA caused by Tau. These findings indicate that Tau alters DNA helicity and integrity and also nicks the DNA. The relevance of these novel intriguing findings regarding the role Tau in neuronal dysfunction is discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Reactions of N,N′-n-propylene-bis(acetylacetoneimino) metal (II), M[n-P-(AI)2], where M=Ni(II) or Pd(II), with nitrosating reagents have been investigated. Mono- and di-nitrosated complexes were obtained selectively, depending upon the concentration of the nitrosating reagents and the reaction time. In both the cases, the γ-CH group is transformed to an ambidentate isonitroso group (>C=NOH), which coordinates to the metal ion by dislodging the already coordinated carbonyl group. The factors influencing the mode of binding of the isonitroso group have been discussed. The bromination reactions of the mono-nitrosated products of M[n-P-(AI)2] and Pd (II) complexes, Pd [E/i-P-(AI)2], where E/i-P-(AI)2 is a dianion of ethylene/i-propylene-bis (acetylacetoneimine), are also reported. The reaction products have been characterized by elemental analyses, electrical conductivity molecular weight determination, and ir, pmr and electronic spectral data.
Resumo:
Iron is a major pollutant released as a by-product during several industrial operations especially during acid mining of metal ores. In this paper, the use of Bengal gram husk (husk of channa dal, Cicer arientinum) in the biosorption of Fe(III) from aqueous solutions is discussed. Parameters like agitation time, adsorbent dosage and pH were studied at different Fe(Ill) concentrations. The adsorption data fit well with Langmuir and Freundlich isotherm models. The adsorption capacity (q(max)) calculated from the Langmuir isotherm was 72.16 mg of Fe(III)/g of the biosorbent at an initial pH of 2.5. Desorption Studies were performed at different concentrations of hydrochloric acid showing that quantitative recovery of the metal ion is possible. The infrared spectra of the biomass before and after treatment with Fe(III), revealed that hydroxyl, carboxyl and amide bonds are involved in the uptake of Fe(III) ions.
Resumo:
New complexes of lanthanide nitrates with N, N-diethylantipyrine-4-carboxamide (DEAP), with the general formulae [Ln2(DEAP)3] [NO3]6 (where Ln = La, Pr, Nd, Sm, Tb, Ho, Er, Yb and Y) have been isolated and characterized by chemical analysis and various physical methods such as electrolytic conductance, IR and13C NMR spectral data. Electrolytic conductance values and infrared spectral studies indicate that the nitrate groups are coordinated. Infrared and13C NMR spectral analysis show that the ligand DEAP is coordinated to the tripositive metal ion through the diethylcarboxamide carbonyl and antipyrine carbonyl oxygens in a bidentate fashion.
Resumo:
2,4-Lutidine-1-oxide (2,4-LutO) complexes of lanthanide perchlorates of the formulae Ln2(2,4-LutO)13(ClO4)6 (Ln = Pr and Nd) and Ln2(2,4-LutO)15 (ClO4)6 (Ln = La, Tb, Dy, Ho and Yb) have been prepared and characterised by chemical analysis, IR, NMR, conductance and electronic spectral data. Proton NMR data along with the IR data show that the ligand coordinates to the metal ion through the oxygen. Conductance data of the complexes in acetone and nitrobenzene indicate that the perchlorate is not coordinated to the metal ion.
Resumo:
A typical feature of type II restriction endonucleases (REases) is their obligate sequence specificity and requirement for Mg2+ during catalysis. R.KpnI is an exception. Unlike most other type II REases, the active site of this enzyme can accommodate Mg2+, Mn2+, Ca2+, or Zn2+ and cleave DNA. The enzyme belongs to the HNH superfamily of nucleases and is characterized by the presence of a beta beta alpha-Me finger motif. Residues D148, H149, and Q175 together form the HNH active site and are essential for Mg2+ binding and catalysis. The unique ability of the enzyme to cleave DNA in the presence of different metal ions is exploited to generate mutants that are specific to one particular metal ion. We describe the generation of a Mn2+-dependent sequence specific endonuclease, defective in DNA cleavage with Mg2+ and other divalent metal ions. In the engineered mutant, only Mn2+ is selectively bound at the active site, imparting Mn2+-mediated cleavage. The mutant is impaired in concerted double-stranded DNA cleavage, leading to accumulation of nicked intermediates. The nicking activity of the mutant enzyme is further enhanced by altered reaction conditions. The active site fluidity of R Eases allowing flexible accommodation of catalytic cofactors thus forms a basis for engineering selective metal ion-dependent REase additionally possessing nicking activity.
Resumo:
The flocculation and filtration characteristics of typical Indian iron ore fines have been studied using starch as flocculant in the presence of an inorganic electrolyte, namely calcium chloride. The effect of various parameters such as pH, starch and calcium chloride concentrations and pulp density on the settling and filtration rates, turbidity of the supernatant and on residual starch and calcium ion concentrates has been investigated through a statistical design and analysis approach and subsequently optimised on a laboratory scale. The adsorption mechanisms of starch onto haematite have been elucidated through adsorption density measurements, infrared and X-ray photoelectron spectroscopic techniques. The rheological property of the polymer solutions of relevance to flocculations has also been investigated. Further, the role of metal ion-starch interactions in the bulk solution, has been studied. In order to understand the nature of polymer adsorption at the double-layer, electrokinetic studies have been carried out with the iron ore mineral samples using starch and calcium chloride. Based on the above findings, selective floculaation tests on artificial mixtures of iron ore minerals have been carried out to determine the separation efficiencies from the view point of alumina and silica removal from haematite as well as the control of alumina: silica ratio in Indian iron ores.
Resumo:
The nature of interaction of Rh(III) with DNA was studied using viscometry and ultraviolet, visible and infrared spectroscopy. The rate of interaction was found to be very slow at room temperature taking several days for completion. The time needed to attain equilibrium is dependent on the concentrations of metal ion, higher the concentration shorter the period required for equilibration. Visible spectra of Rh(III) were found to alter considerably in the presence of DNA. An increase in absorbance and a red shift were observed in the ultraviolet spectra of DNA in the presence of Rh(III). The specific viscosity of DNA solution was found to decrease asymptotically with time and concentrations of metal ion. The melting temperature of DNA was found to increase at lower metal ion concentrations, whereas at higher values a decrease was obtained. At still higher metal ion concentrations (Image ) a ‘nonmeltable state’ of DNA was observed. These results seem to indicate that Rh(III) binds both with the phosphate and the bases of the DNA.
Resumo:
Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.
Resumo:
Crystal structures of two different forms of the calcium perchlorate complex of cyclo(Ala-Leu-Pro-Gly)2 have been determined and refined using X-ray crystallographic techniques. Orthorhombic form: C32H52N8O8.Ca(ClO4)2.7H2O.2CH3OH, space group C222(1), a = 14.366, b = 18.653, c = 19.824 A, Z = 4, R = 0.068 for 2208 observed reflections. Monoclinic form: C32H52N8O8.Ca(ClO4)2.4H2O, space group C2, a = 21.096, b = 10.182, c = 11.256 A, beta = 103.33 degrees, Z = 2, R = 0.075 for 2165 observed reflections. The cyclic peptide molecule in both the structures has the form of a twofold symmetric, slightly elongated bowl. Type II' beta-turns, involving Gly and Ala at the corners, exist at the two ends of the molecule. The interior of the molecule is substantially hydrophilic, and the external surface of the bowl is largely hydrophobic. The calcium ion is located at the centre of the mouth of the bowl-like molecule. In both crystal forms, four peptide carbonyl oxygens from the cyclic peptide and two solvent oxygens coordinate to the metal ion. The mode of complexation may be described as incomplete encapsulation as, for example, in the case of metal complexes of antamanide. In the crystal structures the complex ions are held together by hydrogen bonds involving perchlorate ions and water molecules. The molecular structure observed in the crystals is entirely consistent with the results of solution studies, which also indicate the conformation of the cyclic peptide in the complex to be similar to that of the uncomplexed molecule.
Functional Analysis of an Acid Adaptive DNA Adenine Methyltransferase from Helicobacter pylori 26695
Resumo:
HP0593 DNA-(N-6-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5'-GCAG-3' and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co2+, Mn2+, and also Mg2+ stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori.
Resumo:
The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The use of a number of perovskite phases M� M�O3-x, as the only forming additive in ZnO ceramics, produces a high nonlinearity index, ?(up to 45), where M� is a multivalent transition?metal ion and M� is an alkaline earth or a rare?earth ion. From this study, the formation parameters crucial to high nonlinearity, such as nonstoichiometry in the as?received ZnO powder, low x values of the additives and fast cooling rate after the sintering, are explainable on the basis of a depletion layer formation at the presintering stage. This is because of the surface states arising out of the chemisorbed oxygen. The depletion layer is retained during sintering as a result of the higher valence state of M� ions, preferentially present at the grain?boundary regions. The fast cooling freezes in the high?temperature concentration of donor?type defects, thereby decreasing the depletion layer width.
Resumo:
Five coordination compounds Zn(mbmpbi)(2)Cl-2 (1), Zn(mbmpbi)(2)Br-2 (2), Cd(mbmpbi)(2)Cl-2 (3), Hg(mbmpbi)(2)Cl-2 (4) and Hg(mbmpbi)(2)Br-2 (5) were synthesized by the reaction of 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole (mbmpbi) with the corresponding metal halides. The complexes have been characterized by elemental analysis, conductance measurements, FT-IR, H-1 NMR and photoluminescence spectral studies. The ligand mbmpbi exhibits the N-benzimidazole coordination. The structures of 3-5 have been determined by single crystal X-ray diffraction. These three complexes are isostructural, crystallizing in the monoclinic system. P2/n space group with a distorted tetrahedral geometry around the metal ion. Zn(II) and Cd(II) complexes show strong blue emission in solid state at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of guar gum with biotite mica has been investigated through adsorption, flotation and electrokinetic measurements. The adsorption densities of guar gum increase with increase of pH and the isotherms exhibit Langmuirian behaviour. Pretreatment of mica with a complexing agent such as EDTA results in a decrease in the adsorption density, highlighting the contribution of metal ions to the adsorption process. An increase in the surface face-to-edge ratio lends to an increase in the adsorption density. The flotation recoveries decrease as a function of pH, complementing the adsorption results. However, polymer depressant ability is reduced in the case of EDTA treated mica, consequent to reduction of metallic sites. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in the shift of the shear plane, further away from the interface. Dissolution experiments indicate release of metal ions from mica, while co-precipitation tests confirm polymer-metal ion interaction in the bulk solution. The adsorption process is governed by hydrogen bonding as well as chemical interaction between guar gum and the surface metal hydroxide groups of mica. (C) 1997 Published by Elsevier Science Ltd.