960 resultados para Maximum-entropy selection criterion
Resumo:
Dynamics of biomolecules over various spatial and time scales are essential for biological functions such as molecular recognition, catalysis and signaling. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. Unfortunately, these distributions cannot be fully constrained by the limited information from experiments, making the problem an ill-posed one in the terminology of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem needs to be regularized by making assumptions, which inevitably introduce biases into the result.
Here, I present two continuous probability density function approaches to solve an important inverse problem called the RDC trigonometric moment problem. By focusing on interdomain orientations we reduced the problem to determination of a distribution on the 3D rotational space from residual dipolar couplings (RDCs). We derived an analytical equation that relates alignment tensors of adjacent domains, which serves as the foundation of the two methods. In the first approach, the ill-posed nature of the problem was avoided by introducing a continuous distribution model, which enjoys a smoothness assumption. To find the optimal solution for the distribution, we also designed an efficient branch-and-bound algorithm that exploits the mathematical structure of the analytical solutions. The algorithm is guaranteed to find the distribution that best satisfies the analytical relationship. We observed good performance of the method when tested under various levels of experimental noise and when applied to two protein systems. The second approach avoids the use of any model by employing maximum entropy principles. This 'model-free' approach delivers the least biased result which presents our state of knowledge. In this approach, the solution is an exponential function of Lagrange multipliers. To determine the multipliers, a convex objective function is constructed. Consequently, the maximum entropy solution can be found easily by gradient descent methods. Both algorithms can be applied to biomolecular RDC data in general, including data from RNA and DNA molecules.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Se presenta un estudio de detección y caracterización de eventos sísmicos del tipo volcano tectónicos y largo periodo de registros sísmicos generados por el volcán Cotopaxi. La estructura secuencial de detección propuesta permite en un registro sísmico maximizar la probabilidad de presencia de un evento y minimizar la ausencia de este. La detección se la realiza en el dominio del tiempo en cuasi tiempo real manteniendo una tasa constante de falsa alarma para posteriormente realizar un estudio del contenido espectral de los eventos mediante el uso de estimadores espectrales clásicos como el periodograma y paramétricos como el método de máxima entropía de Burg, logrando así, categorizar a los eventos detectados como volcano tectónicos, largo periodo y otros cuando no poseen características pertenecientes a los otros dos tipos como son los rayos.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.
Resumo:
The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades
Resumo:
We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs.
Resumo:
Se describe la variante homocigota c.320-2A>G de TGM1 en dos hermanas con ictiosis congénita autosómica recesiva. El clonaje de los transcritos generados por esta variante permitió identificar tres mecanismos moleculares de splicing alternativos.
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.
Resumo:
The second differential of the entropy is used for analysing the stability of a thermodynamic climatic model. A delay time for the heat flux is introduced whereby it becomes an independent variable. Two different expressions for the second differential of the entropy are used: one follows classical irreversible thermodynamics theory; the second is related to the introduction of response time and is due to the extended irreversible thermodynamics theory. the second differential of the classical entropy leads to unstable solutions for high values of delay times. the extended expression always implies stable states for an ice-free earth. When the ice-albedo feedback is included, a discontinuous distribution of stable states is found for high response times. Following the thermodynamic analysis of the model, the maximum rates of entropy production at the steady state are obtained. A latitudinally isothermal earth produces the extremum in global entropy production. the material contribution to entropy production (by which we mean the production of entropy by material transport of heat) is a maximum when the latitudinal distribution of temperatures becomes less homogeneous than present values
Resumo:
The objectives of this work were to estimate the genetic and phenotypic parameters and to predict the genetic and genotypic values of the selection candidates obtained from intraspecific crosses in Panicum maximum as well as the performance of the hybrid progeny of the existing and projected crosses. Seventy-nine intraspecific hybrids obtained from artificial crosses among five apomictic and three sexual autotetraploid individuals were evaluated in a clonal test with two replications and ten plants per plot. Green matter yield, total and leaf dry matter yields and leaf percentage were evaluated in five cuts per year during three years. Genetic parameters were estimated and breeding and genotypic values were predicted using the restricted maximum likelihood/best linear unbiased prediction procedure (REML/BLUP). The dominant genetic variance was estimated by adjusting the effect of full-sib families. Low magnitude individual narrow sense heritabilities (0.02-0.05), individual broad sense heritabilities (0.14-0.20) and repeatability measured on an individual basis (0.15-0.21) were obtained. Dominance effects for all evaluated characteristics indicated that breeding strategies that explore heterosis must be adopted. Less than 5% increase in the parameter repeatability was obtained for a three-year evaluation period and may be the criterion to determine the maximum number of years of evaluation to be adopted, without compromising gain per cycle of selection. The identification of hybrid candidates for future cultivars and of those that can be incorporated into the breeding program was based on the genotypic and breeding values, respectively. The prediction of the performance of the hybrid progeny, based on the breeding values of the progenitors, permitted the identification of the best crosses and indicated the best parents to use in crosses.
Resumo:
The economical viability of three cogeneration schemes as supplying alternatives for a hypothetical industrial process has been studied. A cost appropriation method based on Valero's studies (1986) has been used. This method enables the determination of exergetic flows, the Second Law efficiency of equipment and the monetary costs of the products acquired by the industrial process (steam and electrical energy). The criterion adopted for the selection is the global cost of the supplied products to the industrial process as regarding in Brazilian conditions.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen's algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Buhlmann and Wyner (1999) [4] and Csiszar and Talata (2006) [9]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A combination of an extension of the topological instability ""lambda criterion"" and a thermodynamic criterion were applied to the Al-La system, indicating the best range of compositions for glass formation. Alloy compositions in this range were prepared by melt-spinning and casting in an arc-melting furnace with a wedge-section copper mold. The GFA of these samples was evaluated by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The results indicated that the gamma* parameter of compositions with high GFA is higher, corresponding to a range in which the lambda parameter is greater than 0.1, which are compositions far from Al solid solution. A new alloy was identified with the best GFA reported so far for this system, showing a maximum thickness of 286 mu m in a wedge-section copper mold. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The silvopastoral system is a viable technological alternative to extensive cattle grazing, however, for it to be successful, forage grass genotypes adapted to reduced light need to be identified. The objective of this study was to select progenies of Panicum maximum tolerant to low light conditions for use in breeding programs and to study the genetic control and performance of some traits associated with shade tolerance. Six full-sib progenies were evaluated in full sun, 50% and 70% of light reduction in pots and subjected to cuttings. Progeny genotypic values (GV) increased with light reduction in relation to plant height (H) and specific leaf area (SLA). The traits total dry mass accumulation (DM) and leaf dry mass accumulation (LDM) had GV higher in 50% shade and intermediate in 70% shade. The GV of tiller number (TIL) and root dry mass accumulation (RDM) decreased with light reduction. The highest positive correlations were obtained for the traits H and RDM with SLA and DM; the highest negative correlations were between TIL and SLA and RDM, and H and LDM. The progenies showed higher tolerance to 50% light reduction and, among them, two stood out and will be used in breeding programs. It was also found that it is not necessary to evaluate some traits under all light conditions. All traits had high broad sense heritability and high genotypic correlation between progenies in all light intensities. There is genetic difference among the progenies regarding the response to different light intensities, which will allow selection for shade tolerance