947 resultados para Mating type genes
Resumo:
BACKGROUND: IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity. METHODS AND RESULTS: Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3'- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS. CONCLUSIONS: These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases.
Resumo:
The present study was conducted to explore whether single nucleotide polymorphisms (SNPs) in Th1 and Th17 cell-mediated immune response genes differentially influence the risk of rheumatoid arthritis (RA) in women and men. In phase one, 27 functional/tagging polymorphisms in C-type lectins and MCP-1/CCR2 axis were genotyped in 458 RA patients and 512 controls. Carriers of Dectin-2 rs4264222T allele had an increased risk of RA (OR = 1.47, 95%CI 1.10-1.96) whereas patients harboring the DC-SIGN rs4804803G, MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of developing the disease (OR = 0.66, 95%CI 0.49-0.88; OR = 0.66, 95%CI 0.50-0.89; OR = 0.73, 95%CI 0.55-0.97 and OR = 0.68, 95%CI 0.51-0.91). Interestingly, significant gender-specific differences were observed for Dectin-2 rs4264222 and Dectin-2 rs7134303: women carrying the Dectin-2 rs4264222T and Dectin-2 rs7134303G alleles had an increased risk of RA (OR = 1.93, 95%CI 1.34-2.79 and OR = 1.90, 95%CI 1.29-2.80). Also five other SNPs showed significant associations only with one gender: women carrying the MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of RA (OR = 0.61, 95%CI 0.43-0.87; OR = 0.67, 95%CI 0.47-0.95 and OR = 0.60, 95%CI 0.42-0.86). In men, carriers of the DC-SIGN rs2287886A allele had an increased risk of RA (OR = 1.70, 95%CI 1.03-2.78), whereas carriers of the DC-SIGN rs4804803G had a decreased risk of developing the disease (OR = 0.53, 95%CI 0.32-0.89). In phase 2, we genotyped these SNPs in 754 RA patients and 519 controls, leading to consistent gender-specific associations for Dectin-2 rs4264222, MCP-1 rs1024611, MCP-1 rs13900 and DC-SIGN rs4804803 polymorphisms in the pooled sample (OR = 1.38, 95%CI 1.08-1.77; OR = 0.74, 95%CI 0.58-0.94; OR = 0.76, 95%CI 0.59-0.97 and OR = 0.56, 95%CI 0.34-0.93). SNP-SNP interaction analysis of significant SNPs also showed a significant two-locus interaction model in women that was not seen in men. This model consisted of Dectin-2 rs4264222 and Dectin-2 rs7134303 SNPs and suggested a synergistic effect between the variants. These findings suggest that Dectin-2, MCP-1 and DC-SIGN polymorphisms may, at least in part, account for gender-associated differences in susceptibility to RA.
Resumo:
Novel biomarkers are required to improve prognostic predictions obtained with lung cancer staging systems. This study of 62 surgically-treated Non-Small Cell Lung Cancer (NSCLC) patients had two objectives: i) to compare the predictive value of T-stage classifications between the 6(th) and 7(th) editions of the Tumor, Node, and Metastasis staging system (TNM); and ii) to examine the association of Pkp1 and/or Krt15 gene expression with survival and outcomes. Multivariate and Kaplan-Meier survival analyses were performed, examining the relationship of survival with T-stage, recurrence, and TNM-stage (by each TNM edition) and with the single/combined expression of Pkp1 and/or Krt15 genes. Five-year survival rates only significantly differed as a function of T-stage in patients without recurrence when estimated using the 6(th) edition of the TNM classification and only in patients in pathologic TNM-stage IA using the 7(th). Overall survival for patients with elevated expression of both genes was 13.5 months in those with adenocarcinoma and 34.6 months in those with squamous cell carcinoma. Overall survival was 30.4 months in patients with Pkp1 gene upregulation and 30.9 months in those with Krt15 gene upregulation. In conclusion, survival estimations as a function of T-staging differed between the 6(th) and 7(th) editions of TNM. Overall survival differed according to the expression of Pkp1 and/or Krt15 genes, although this relationship did not reach statistical significance.
Resumo:
Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
Resumo:
This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.
Resumo:
Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a beta(1) subunit. Wild-type beta(1a) subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Ca(v)1.2 and alpha(2)delta2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length beta(1a) subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the beta(1a) subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of beta(2) calcium channel subunits can be confirmed and extended to the beta(1) calcium channel subunit.
Resumo:
OBJECTIVE Endogenous uveitis is a major cause of visual loss mediated by the immune system. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes a lymphoid-specific phosphatase that plays a key role in T-cell receptor (TCR) signaling. Two independent functional missense single nucleotide polymorphisms (SNPs) located within the PTPN22 gene (R263Q and R620W) have been associated with different autoimmune disorders. We aimed to analyze for the first time the influence of these PTPN22 genetic variants on endogenous non-anterior uveitis susceptibility. METHODS We performed a case-control study of 217 patients with endogenous non-anterior uveitis and 718 healthy controls from a Spanish population. The PTPN22 polymorphisms (rs33996649 and rs2476601) were genotyped using TaqMan allelic discrimination assays. The allele, genotype, carriers, and allelic combination frequencies were compared between cases and controls with χ(2) analysis or Fisher's exact test. RESULTS Our results showed no influence of the studied SNPs in the global susceptibility analysis (rs33996649: allelic P- value=0.92, odds ratio=0.97, 95% confidence interval=0.54-1.75; rs2476601: allelic P- value=0.86, odds ratio=1.04, 95% confidence interval=0.68-1.59). Similarly, the allelic combination analysis did not provide additional information. CONCLUSIONS Our results suggest that the studied polymorphisms of the PTPN22 gene do not play an important role in the pathophysiology of endogenous non-anterior uveitis.
Resumo:
BACKGROUND Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. METHODS AND FINDINGS The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction = 1.20×10-4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction = 1.50×10-3) and waist circumference (p for interaction = 7.49×10-9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score. CONCLUSIONS The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Resumo:
BACKGROUND: The Complete Arabidopsis Transcript MicroArray (CATMA) initiative combines the efforts of laboratories in eight European countries 1 to deliver gene-specific sequence tags (GSTs) for the Arabidopsis research community. The CATMA initiative offers the power and flexibility to regularly update the GST collection according to evolving knowledge about the gene repertoire. These GST amplicons can easily be reamplified and shared, subsets can be picked at will to print dedicated arrays, and the GSTs can be cloned and used for other functional studies. This ongoing initiative has already produced approximately 24,000 GSTs that have been made publicly available for spotted microarray printing and RNA interference. RESULTS: GSTs from the CATMA version 2 repertoire (CATMAv2, created in 2002) were mapped onto the gene models from two independent Arabidopsis nuclear genome annotation efforts, TIGR5 and PSB-EuGène, to consolidate a list of genes that were targeted by previously designed CATMA tags. A total of 9,027 gene models were not tagged by any amplified CATMAv2 GST, and 2,533 amplified GSTs were no longer predicted to tag an updated gene model. To validate the efficacy of GST mapping criteria and design rules, the predicted and experimentally observed hybridization characteristics associated to GST features were correlated in transcript profiling datasets obtained with the CATMAv2 microarray, confirming the reliability of this platform. To complete the CATMA repertoire, all 9,027 gene models for which no GST had yet been designed were processed with an adjusted version of the Specific Primer and Amplicon Design Software (SPADS). A total of 5,756 novel GSTs were designed and amplified by PCR from genomic DNA. Together with the pre-existing GST collection, this new addition constitutes the CATMAv3 repertoire. It comprises 30,343 unique amplified sequences that tag 24,202 and 23,009 protein-encoding nuclear gene models in the TAIR6 and EuGène genome annotations, respectively. To cover the remaining untagged genes, we identified 543 additional GSTs using less stringent design criteria and designed 990 sequence tags matching multiple members of gene families (Gene Family Tags or GFTs) to cover any remaining untagged genes. These latter 1,533 features constitute the CATMAv4 addition. CONCLUSION: To update the CATMA GST repertoire, we designed 7,289 additional sequence tags, bringing the total number of tagged TAIR6-annotated Arabidopsis nuclear protein-coding genes to 26,173. This resource is used both for the production of spotted microarrays and the large-scale cloning of hairpin RNA silencing vectors. All information about the resulting updated CATMA repertoire is available through the CATMA database http://www.catma.org.
Resumo:
Polymorphisms in chemokine receptors play an important role in the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer (CC). Our study examined the association of CCR2-64I (rs1799864) andCCR5-Δ32 (rs333) polymorphisms with susceptibility to develop cervical lesion (CIN and CC) in a Brazilian population. The genotyping of 139 women with cervical lesions and 151 women without cervical lesions for the CCR2-64I and CCR5-Δ32 polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism. The individuals carrying heterozygous or homozygous genotypes (GA+AA) for CCR2-64I polymorphisms seem to be at lower risk for cervical lesion [odds ratio (OR) = 0.37, p = 0.0008)]. The same was observed for the A allele (OR = 0.39, p = 0.0002), while no association was detected (p > 0.05) with CCR5-Δ32 polymorphism. Regarding the human papillomavirus (HPV) type, patients carrying the CCR2-64Ipolymorphism were protected against infection by HPV type 16 (OR = 0.35, p = 0.0184). In summary, our study showed a protective effect ofCCR2-64I rs1799864 polymorphism against the development of cervical lesions (CIN and CC) and in the susceptibility of HPV 16 infection.
Resumo:
AIMS/HYPOTHESIS: Paraoxonase is a member of a multigene family of three genes. Paraoxonase2 gene polymorphisms have been associated with coronary heart disease in non-diabetic patients and with an increased fasting glycaemia in patients with Type II (non-insulin-dependent) diabetes mellitus. We tested the hypothesis of whether paraoxonase1 and paraoxonase2 polymorphisms were associated with diabetic nephropathy. METHODS: Our case-control study of 299 Swiss patients with Type II diabetes included 147 patients with confirmed diabetic nephropathy. RESULTS: In univariate analyses the two paraoxonase2 polymorphisms were associated with diabetic nephropathy. When subjected to multivariate analyses, both paraoxonase2 polymorphisms remained statistically associated with diabetic nephropathy independent of traditional risk factors (paraoxonase2-148: OR = 2.53, p = 0.003; paraoxonase2-311: OR = 2.67, p = 0.002). In addition, BMI interacted with paraoxonase2 polymorphisms as a risk factor of nephropathy. CONCLUSIONS/INTERPRETATION: The paraoxonase2 gene polymorphisms were significantly associated with diabetic nephropathy independent of traditional risk factors in Type II diabetic patients. The susceptibility to diabetic nephropathy was intensified by the degree of obesity. Pathophysiological pathways should be investigated and could be involved in insulin resistance or lipids metabolism or both.
Resumo:
There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals.
Resumo:
The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human enkephalin promoter. In this study, we demonstrate that CREB-2 cooperates with Tax to enhance viral transcription and that its basic-leucine zipper C-terminal domain is required for both in vitro and in vivo interactions with Tax. Our results confirm that the activation of the HTLV-1 promoter through Tax and factors of the ATF/CREB family is PKA independent.
Resumo:
The autosomal recessive form of type I pseudohypoaldosteronism (PHA-I) is an inherited salt-losing syndrome resulting from diminution-of-function mutations in the 3 subunits of the epithelial Na+ channel (ENaC). A PHA-I stop mutation (alpha(R508stop)) of the ENaC alpha subunit is predicted to lack the second transmembrane domain and the intracellular COOH-terminus, regions of the protein involved in pore function. Nonetheless, we observed a measurable Na+ current in Xenopus laevis oocytes that coexpress the beta and gamma subunits with the truncated alpha subunit. The mutant alpha was coassembled with beta and gamma subunits and was present at the cell surface at a lower density, consistent with the lower Na+ current seen in oocytes with the truncated alpha subunit. The single-channel Na+ conductance for the mutant channel was only slightly decreased, and the appearance of the macroscopic currents was delayed by 48 hours with respect to wild-type. Our data suggest novel roles for the alpha subunit in the assembly and targeting of an active channel to the cell surface, and suggest that channel pores consisting of only the beta and gamma subunits can provide significant residual activity. This activity may be sufficient to explain the absence of a severe pulmonary phenotype in patients with PHA-I.
Resumo:
Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.