838 resultados para Mathematics, Education, Indigenous
Resumo:
Detracking and heterogeneous groupwork are two educational practices that have been shown to have promise for affording all students needed learning opportunities to develop mathematical proficiency. However, teachers face significant pedagogical challenges in organizing productive groupwork in these settings. This study offers an analysis of one teacher’s role in creating a classroom system that supported student collaboration within groups in a detracked, heterogeneous geometry classroom. The analysis focuses on four categories of the teacher’s work that created a set of affordances to support within group collaborative practices and links the teacher’s work with principles of complex systems.
Resumo:
Recent mathematics education reform efforts call for the instantiation of mathematics classroom environments where students have opportunities to reason and construct their understandings as part of a community of learners. Despite some successes, traditional models of instruction still dominate the educational landscape. This limited success can be attributed, in part, to an underdeveloped understanding of the roles teachers must enact to successfully organize and participate in collaborative classroom practices. Towards this end, an in-depth longitudinal case study of a collaborative high school mathematics classroom was undertaken guided by the following two questions: What roles do these collaborative practices require of teacher and students? How does the community’s capacity to engage in collaborative practices develop over time? The analyses produced two conceptual models: one of the teacher’s role, along with specific instructional strategies the teacher used to organize a collaborative learning environment, and the second of the process by which the class’s capacity to participate in collaborative inquiry practices developed over time.
Resumo:
This study intended to measure teacher mathematical content knowledge both before and after the first year of teaching and taking graduate teacher education courses in the Teach for America (TFA) program, as well as measure attitudes toward mathematics and teaching both before and after TFA teachers’ first year. There was a significant increase in both mathematical content knowledge and attitudes toward mathematics over the TFA teachers’ first year teaching. Additionally, several significant correlations were found between attitudes toward mathematics and content knowledge. Finally, after a year of teaching, TFA teachers had significantly better attitudes toward mathematics and teaching than neutral.
Resumo:
The aim of this research is to identify aspects that support the development of prospective mathematics teachers’ professional noticing in a b-learning context. The study presented here investigates the extent to which prospective secondary mathematics teachers attend and interpret secondary school students’ proportional reasoning and decide how to respond. Results show that interactions in an on-line discussion improve prospective mathematics teachers’ ability to identify and interpret important aspects of secondary school students’ mathematical thinking.
Resumo:
This article considers the question of what specific actions a teacher might take to create a culture of inquiry in a secondary school mathematics classroom. Sociocultural theories of learning provide the framework for examining teaching and learning practices in a single classroom over a two-year period. The notion of the zone of proximal development (ZPD) is invoked as a fundamental framework for explaining learning as increasing participation in a community of practice characterized by mathematical inquiry. The analysis draws on classroom observation and interviews with students and the teacher to show how the teacher established norms and practices that emphasized mathematical sense-making and justification of ideas and arguments and to illustrate the learning practices that students developed in response to these expectations.
Resumo:
Previous research on computers and graphics calculators in mathematics education has examined effects on curriculum content and students’ mathematical achievement and attitudes while less attention has been given to the relationship between technology use and issues of pedagogy, in particular the impact on teachers’ professional learning in specific classroom and school environments. This observation is critical in the current context of educational policy making, where it is assumed – often incorrectly – that supplying schools with hardware and software will increase teachers’ use of technology and encourage more innovative teaching approaches. This paper reports on a research program that aimed to develop better understanding of how and under what conditions Australian secondary school mathematics teachers learn to effectively integrate technology into their practice. The research adapted Valsiner’s concepts of the Zone of Proximal Development, Zone of Free Movement and Zone of Promoted Action to devise a theoretical framework for analysing relationships between factors influencing teachers’ use of technology in mathematics classrooms. This paper illustrates how the framework may be used by analysing case studies of a novice teacher and an experienced teacher in different school settings.