998 resultados para Materiais Reciclados


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, cathodes employed in secondary lithium batteries are reviewed. These cathodes have great technologic and scientific importance, specifically, materials for cathodes as electronic conductor polymers (ECP), transition metal oxides (TMO) and nanocomposites of ECP/TMO. The use of a specific cathodic material is based in some intrinsic characteristics that improve the performance of the battery. Thus, some vantages and disvantages of these insertion compounds are discussed, as lithium insertion capacity, energy density, and the ciclability of these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials obtained during the synthesis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were characterized by Fourier transform infrared (FTIR) transmission spectroscopy and/or Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). By these techniques the spectrometric alterations that occurred during the process were observed. The characterized species during the synthesis of HMX were alpha-HMX, beta-HMX, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and HMX/RDX mixtures. The FTIR-PAS was verified to be a promising technique of great usefulness of the characterization of highly energetic materials because it is fast, simple and requires no sample preparation unlike Fourier transform infrared transmission technique (KBr pellet). The FTIR-PAS analysis showed that with small sample quantity is possible to distinguish between thealpha-HMX and beta-HMX and to detect even in a qualitative way different HMX / RDX ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some results on the employ of recycled graphite electrode obtained from used common 1.5 V batteries in the preparation of modified electrode and the electrocatalytical hydrogenation of benzaldehyde and of n-valeraldehyde. This inexpensive and easy to obtain electrode was prepared by coating it with a 1:1 mixed film of poly-(allylfenil ether): poly-[allyl p-(2-ethylammonium) benzene ether] and introduction of dispersed platinum particles by ion exchange and reduction of PtCl4-2. Electroreduction of H+ from aqueous H2SO4 using the proposed electrode hydrogenated the substrates in a way comparable with that of vitreous carbon electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communications on Chemistry of Materials topics were already presented in the first annual meetings of the Brazilian Chemical Society, dispersed throughout various meeting sections. The SBQ Materials Chemistry division was organized in 1993, attracting those members with an interest in the composition, structure and properties of materials, as related to their functions. This paper is an account of the development of Materials Chemistry research in Brazil, based on the SBQ annual meetings data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today satellites propulsion is based on the use of monopropellant and/or bipropellant chemical systems. The maneuvering of satellite is based on the hydrazine decomposition micropropulsors catalyzed by metallic iridium supported on g-alumina. This reaction is a surface reaction and is strongly exothermic and implies that the operation of the micropropulsor is controlled by the mass and heat diffusions. For this reason and for the fact that the propulsor operation is frequently in pulsed regime, the catalyst should support high pressure and temperature variations within a short time period. The performance and the durability of the commercial catalyst are jeopardized by the low thermal conductivity of the alumina. The low thermal conductivity of the alumina support restricts the heat diffusion and leads to the formation of hot spots on the catalyst surface causing the metal sintering and/or fractures of the support, resulting in loss of the activity and catalyst destruction. This work presents the synthesis and characterization of new carbon composite support for the active element iridium, in substitution of the commercial catalysts alumina based support. These supports are constituted of carbon nanofibers (30 to 40 nm diameter) supported on a macroscopic carbon felt. These materials present high thermal conductivity and mechanical resistance, as well as the easiness to be shaped with different macroscopic shapes. The mechanical stability and the performance of the iridium supported on the carbon composite support, evaluated in a laboratory scale test in hydrazine decomposition reaction, are superior compared to the commercial catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview about the role of alkoxides in the most recent uses of the sol-gel process in the synthesis of new materials is presented. Special attention is focused on the uses of silicon, aluminum, zirconium and titanium alkoxides. This review shows that the alkoxides enable the synthesis of new matrices with controlled surface area, acidity and porosity, as well as some unusual properties. The property associated with the solubility of metal alkoxides opens enormous possibilities of combining them for the synthesis films of powders with a very large range of metal compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Associating the well known advantages of hybrid materials to the wide potential of nanomaterials, the new and featuring class of polymer nanocomposites turned into one of the most intensively researched areas. This review highlights recent developments in the field of the synthesis of polymer based nanocomposites. Important issues related to the surface modification of fillers, in order to promote the compatibility between the inorganic/organic components, are also reported. The enhancement of the physical properties and the potential applications of polymer nanocomposites are considered in typical examples, given for each synthetic method described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and application of organic-inorganic hybrid materials are under fast development and constitute an interesting research topic on account of the versatility and wide range of applications offered by these materials. These properties can be achieved due to the mixture of the components at the molecular level. The present review covers the state of the art, the most useful preparation routes and the potential applications of these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combinatorial chemistry refers to techniques to rapidly fabricate tens, hundreds or even thousands of different micro samples. The analysis of the large number of samples generated by combinatorial methods requires highly efficient analytical methods. In this case, the challenges are due not only to the large number of samples to be analyzed, but also to the small amount of sample available for analysis. This paper describes the fundamentals of combinatorial chemical methods applied to discover of materials and the development in x-ray diffraction to analyze micro samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the current status of fuel cells is described with particular emphasis on high (T > 800 ºC) and intermediate (T < 800 ºC) temperature solid oxide fuel cells. Also the importance of the fuel cell technology is shown. Reviewed are the fundamental features, the basic principles, types of fuel cell, fabrication methods, cell configurations and the development of components (cathodes, anodes, electrolytes, interconnect) and materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biomass as raw-material for obtaining chemicals, polymers and fuels is emerging as a clever alternative solution for the increasing energy demand, environmental awareness and petroleum shortage. In this work, some attempts in order to develop catalytic systems suitable for triglyceride transformation into fuels, polymers and intermediates are reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows different aspects related to the application of different thermal analysis techniques in the study of energetic materials. The criteria used to choose the best technique and an exact approach to adjust the experimental data with a proper model are here discussed. The paper shows how to use the different thermal analysis results to help develop new compounds, to study the stability of some energetic materials and their compatibility, and the conditions necessary for a secure storing environment.