935 resultados para Matabolism of Proteins
Resumo:
Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.
Resumo:
The polymer conformation structure of gluten extracted from a Polish wheat cultivar, Korweta, and gluten subtractions obtained from 2 U.K. breadmaking and biscuit flour cultivars, Hereward and Riband, was investigated using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The results showed the conformation of proteins varied between flour, hydrated flour, and hydrated gluten. The beta-sheet structure increased progressively from flour to hydrated flour and to hydrated gluten. In hydrated gluten protein fractions comprising gliadin, soluble glutenin, and gel protein, beta-sheet structure increased progressively from soluble gliadin and glutenin to gluten and gel protein; beta-sheet content was also greater in the gel protein from the breadmaking flour Hereward than the biscuit flour Riband.
Resumo:
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.
Resumo:
Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.
Resumo:
Ca(2+) elevation is essential to platelet activation. STIM1 senses Ca(2+) in the endoplasmic reticulum and activates Orai channels allowing store-operated Ca(2+) entry (SOCE). STIM1 has also been reported to be present in the plasma membrane (PM) with its N-terminal region exposed to the outside medium but its role is not fully understood. We have examined the effects of the antibody GOK/STIM1, which recognises the N-terminal region of STIM1, on SOCE, agonist-stimulated Ca(2+) entry, surface exposure, in vitro thrombus formation and aggregation in human platelets. We also determined novel binding partners of STIM1 using proteomics. The dialysed GOK/STIM1 antibody failed to reduced thapsigargin- and agonist-mediated Ca(2+) entry in Fura2-labelled cells. Using flow cytometry we detect a portion of STIM1 to be surface-exposed. The dialysed GOK/STIM1 antibody reduced thrombus formation by whole blood on collagen-coated capillaries under flow and platelet aggregation induced by collagen. In immunoprecipitation experiments followed by proteomic analysis, STIM1 was found to extract a number of proteins including myosin, DOCK10, thrombospondin-1 and actin. These studies suggest that PM STIM1 may facilitate platelet activation by collagen through novel interactions at the plasma membrane while the essential Ca(2+)-sensing role of STIM1 is served by the protein in the ER.
Resumo:
Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson’s disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural informa- tion available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.
Resumo:
One Norwegian and one UK spring wheat cultivar, Bjarne and Cadenza, respectively, were grown in climate chambers to investigate the effects of lower to moderate temperatures during grain filling on the gluten quality. Two experiments were carried out with weekly fertilization until anthesis, while post-anthesis fertilization was applied in a third experiment. The proportions of different gluten proteins were affected by temperature in a similar manner for both cultivars when grown without post-anthesis fertilization. However, whereas low temperature strongly decreased %UPP for Cadenza, Bjarne had high %UPP at all temperature regimes. The results indicated that the assembly of glutenin polymers in Bjarne was less sensitive to variation in temperature than in Cadenza. Thus, our results suggested that the temperature influenced the proportion of different gluten proteins in both cultivars, while its effects on the assembly of the glutenin polymers were cultivar dependent. The duration of grain filling was longer at the lower temperatures, and this was associated with increased grain weight. Temperature had little effect on the amount of protein accumulated per grain, thus the proportion of proteins was strongly decreased at lower temperatures. This was to some extent, but not fully counteracted by post-anthesis fertilization.
Resumo:
In vivo, enzymatic reduction of some protein disulfide bonds, allosteric disulfide bonds, provides an important level of structural and functional regulation. The free cysteine residues generated can be labeled by maleimide reagents, including biotin derivatives, allowing the reduced protein to be detected or purified. During the screening of monoclonal antibodies for those specific for the reduced forms of proteins, we isolated OX133, a unique antibody that recognizes polypeptide resident, N-ethylmaleimide (NEM)-modified cysteine residues in a sequence-independent manner. OX133 offers an alternative to biotin-maleimide reagents for labeling reduced/alkylated antigens and capturing reduced/alkylated proteins with the advantage that NEM-modified proteins are more easily detected in mass spectrometry, and may be more easily recovered than is the case following capture with biotin based reagents.
Resumo:
The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.
Resumo:
The conidia-mycelia transformation is an essential step during the life cycle of the fungal human pathogens of the Pseudallescheria boydii complex. In the present study, we have analyzed the protein and peptidase profiles in two distinct morphological stages, conidia and mycelia, of Scedosporium apiospermum sensu stricto. Proteins synthesized by the mycelia, migrating at the ranges of 62-48 and 22-18 kDa, were not detected from the conidial extract. Conidia produced a single cellular peptidase of 28 kDa able to digest copolymerized albumin, while mycelia yielded 6 distinct peptidases ranging from 90 to 28 kDa. All proteolytic enzymes were active at acidic pH and fully inhibited by 1,10-phenanthroline, characterizing these activities as metallo-type peptidases. Quantitative peptidase assay, using soluble albumin, showed a high metallopeptidase production in mycelial cells in comparison with conidia. The regulated expression of proteins and peptidases in different morphological stages of S. apiospermum represents a potential target for isolation of stage-specific markers for biochemical and immunological analysis.
Resumo:
We present a site-resolved study of stow (ms to s) motions in a protein in the solid (microcrystalline) state performed with the use of a modified version of the centerband-only detection of exchange (CODEX) NMR experiment. CODEX was originally based on measuring changes in molecular orientation by means of the chemical shift anisotropy (CSA) tensor, and in our modification, angular reorientations of internuclear vectors are observed. The experiment was applied to the study of stow (15)N-(1)H motions of the SH3 domain of chicken a-spectrin. The protein was perdeuterated with partial back-exchange of protons at labile sites. This allowed indirect (proton) detection of (15)N nuclei and thus a significant enhancement of sensitivity. The diluted proton system also made negligible proton-driven spin diffusion between (15)N nuclei, which interferes with the molecular exchange (motion) and hampers the acquisition of dynamic parameters. The experiment has shown that approximately half of the peaks in the 2D (15)N-(1)H correlation spectrum exhibit exchange in a different extent. The correlation time of the slow motion for most peaks is 1 to 3 s. This is the first NMR study of the internal dynamics of proteins in the solid state on the millisecond to second time scale with site-specific spectral resolution that provides both time-scale and geometry information about molecular motions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente estudo consiste em uma caracterização preliminar da atividade proteolítica de frações de proteínas purificadas a partir de lisados de trofozoítos de cepa isolada e axenizada no Brasil. Frações obtidas por cromatografia líquida (FPLC) foram analisadas quanto ao perfil eletroforético em géis de poliacrilamida (SDS-PAGE) e a atividade proteolítica foi avaliada em géis contendo gelatina como substrato. A caracterização das enzimas foi realizada a partir da análise do efeito de inibidores sintéticos de cisteína-proteases (E-64, IAA), serina-proteases (PMSF), serina e cisteína-proteases (TPCK, TLCK, elastatinal), metalo-proteases (EDTA) e aspartil proteases (pepstatina) sobre a degradação do substrato. Entre 30 frações eluídas, bandas de proteínas foram observadas em oito delas, entretanto, atividade proteolítica foi detectada apenas nas frações 23, 24, 25 e 26. O perfil eletroforético das proteínas revelou poucas bandas distribuídas na faixa de 45 a 18 kDa. Os zimogramas revelaram zonas de proteólise na faixa de aproximadamente 62 a 35 kDa, entretanto destacaram-se as bandas de hidrólise de 62, 55, 53, 50, 46 e 40 kDa. Nos ensaios de inibição, a proteólise foi marcantemente inibida por E-64, TPCK, TLCK e elastatinal. Redução discreta da proteólise foi observada com IAA e PMSF, enquanto que EDTA e pepstatina não promoveram alteração dos perfis de hidrólise. Estas observações são relevantes, especialmente se considerarmos que para elucidar o envolvimento das proteases na relação parasita-hospedeiro, a purificação dessas moléculas é um requisito importante.
Resumo:
The comparative histochemical analysis of the fat body of workers belonging to the basal species Cyphomyrmex rimosus and Mycetarotes parallelus and to derived species Acromyrmex disciger and Atta laevigata revealed that this tissue is constituted mainly by cells denominated trophocytes and oenocytes. The trophocytes of all species studied here were characterized mainly by the proteins and lipids synthesis and storage, being the derived species the ones who have presented higher quantity of lipids in the trophocytes when compared to the trophocytes of basal species. In workers M. parallelus and A. laevigata, besides proteins and lipids, there has being observed the presence of polysaccharides, however, in C. rimosus and A. disciger these elements were detected in lower quantities. The histochemical studies of the oenocytes of basal and derived species revealed significant presence of proteins as well as lipids in these cells. In the oenocytes of derived species A. disciger and A. laevigata a higher quantity of lipidic inclusions has being observed, when compared to the basal species. (c) 2005 Elsevier Ltd. All rights reserved.