901 resultados para Manufacturing processes.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current competitiveness of the market has generated the need to minimize the cost of production companies in any field of activity, aimed at reducing the cost of production, the cost of purchasing and manufacturing processes interruption of manufacturing processes for possible maintenance. In this sense, companies are seeking methods to improve and streamline their production line. In ceramics industries, cooking the pieces is the portion of the production process that influences the total costs. The oven construction and maintenance represent a large portion embedded in the cost of the final ceramic product. The proposal for a type of oven for baking the parts that takes into account a better burning process, knowledge of the causes of disease and cost analysis of purchasing both of the constituent materials and labor for its construction, can be significant importance to the composition of final product costs or time analysis of ROI. It is proposed a streamlined design of an oven that takes into account the positive characteristics of the furnaces already built and that the experience has endorsed, and also others that are added at the end, lead to a reduction in production cost, the cost income and the number of pathologies arising from wear of the furnace along the lifespan. Therefore, according to the experiences gained over the years in the construction of furnaces and experience of manufacturing of ceramic, it is proposed a project that has an oven improvement over those now being built and that include, among other topics, economy in fuel burning, streamlining the building process