970 resultados para Malaria Infection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present evidence for Plasmodium vivax infection among Duffy blood group-negative inhabitants of Brazil. The P. vivax identification was determined by both genotypic and non-genotypic screening tests. The Duffy blood group was genotyped by PCR/RFLP and phenotyped using a microtyping kit. We detected two homozygous FY*B-33 carriers infected by P vivax, whose circumsporozoite protein genotypes were VK210 and/or P. vivax-like. Additional efforts are necessary in order to clarify the evidence that P. vivax is being transmitted among Duffy blood group-negative patients from the Brazilian Amazon region. (C) 2007 Published by Elsevier Ltd on behalf of Royal Society of Tropical Medicine and Hygiene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human rabies tansmitted by bats has acquired greater epidemiologic relevance in various Latin American countries, just when cases transmitted by dogs have decreased. Concern has been heightened by reports of increased rates of bats biting humans in villlages in the Amazonian region of Brazil. The aim of the present work was to estimate the potential force of infection (per capita rate at which susceptible individuals acquire infection) of human rabies transmitted by the common vampire bat if the rabies virus were to be introduced to a colony of bats close to a village with a high rate of human bites. The potential force of infection could be then used to anticipate the size of a rabies outbreak in control programs. We present an estimator of potential incidence, adapted from models for malaria. To obtain some of the parameters for the equation, a cross-sectional survey was conducted in Mina Nova, a village of gold prospectors in the Amazonian region of Brazil with high rates of bates biting humans. Bats were captured near dwellings and sent to the Rabies Diagnostic Laboratory at the Center for Control of Zoonoses (São Paulo, Brazil) to be examined. To estimate the force of infection, a hypothetical rabies outbreak among bats was simulated using the actual data obtained in the study area. of 129 people interviewed, 23.33% had been attacked by a vampire bat during the year prior to the study, with an average of 2.8 bites per attacked person. Males (29.41%) were attacked more often than females (11.36%); also, adults (29.35%) were attacked more often than children (8.33%). None of the 12 bats captured in Mina Nova tested positive for rabies, but the force of infection for a hypothetical outbreak was estimated to be 0.0096 per person per year. This risk represents 0.96 cases per 100 area residents, giving an incidence of 1.54 cases of bat-transimtted buman rabies per year in the village of Mina Nova (160 inhabitants). The estimated risk is comparable with what has been observed in similar Brazilian villages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria is an important cause of morbidity and mortality worldwide. One striking aspect regarding malaria is the fact that individuals living in endemic areas do not develop immunity against the parasite, falling ill whenever they are exposed tothe parasite. The understanding of why immunity is not developed in the usual way against Plasmodium is crucial to the improvement of treatment and prevention. In this work, we study some aspects of the dynamics of the blood cycle of malaria using both modelling and data analysis of observed case-histories described by parasitemia time series. By comparing our simulations with experimental results we have shown that the different behaviour observed among patients may be associated to differences in the efficiency of the immune system to control the infection. © EDP Sciences/Societa Italiana di Fisica/Springer-Verlag 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. Methodology/Principal Findings: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number (R0) estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals). Conclusions/Significance: To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication Research Agenda should take biodiversity issues into consideration. © 2013 Laporta et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria remains the most prevalent and devastating parasitic disease worldwide. Vaccination is considered to be an approach that will complement other strategies for prevention and control of the disease in the future. In the last 10 years, intense studies aimed at the development of a malaria vaccine have provided important knowledge of the nature of the host immunological mechanisms of protection and their respective target antigens. It became well established that protective immune responses can be generated against the distinct stages of Plasmodium. However, in general, protective immune responses are directed at stage-specific antigens. The elucidation of the primary structure of these antigens made possible the generation of synthetic and recombinant proteins that are being extensively used in experimental immunizations against the infection. Today, several epitopes of limited polymorphism have been described and protective immunity can be generated by immunization with them. These epitopes are being tested as primary candidates for a subunit vaccine against malaria. Here we critically review the major roadblocks for the development of a malaria vaccine and provide some insight on how these problems are being solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life-threatening Plasmodium vivax malaria cases, while uncommon, have been reported since the early 20th century. Unfortunately, the pathogenesis of these severe vivax malaria cases is still poorly understood. In Brazil, the proportion of vivax malaria cases has been steadily increasing, as have the number of cases presenting serious clinical complications. The most frequent syndromes associated with severe vivax malaria in Brazil are severe anaemia and acute respiratory distress. Additionally, P. vivax infection may also result in complications associated with pregnancy. Here, we review the latest findings on severe vivax malaria in Brazil. We also discuss how the development of targeted field research infrastructure in Brazil is providing clinical and ex vivo experimental data that benefits local and international efforts to understand the pathogenesis of P. vivax. (C) 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-1(19) and PvMSP-3 alpha(359-798). Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-1(19) was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3 alpha(359-798). Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3 alpha), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3 alpha(359-798) during natural infection. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The mechanisms by which humans regulate pro-and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. Methodology/Principal Findings: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF)-alpha receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85), P. falciparum (n = 30), or both species (n = 12), and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL)-10, which correlated positively with parasite density, and elevated IL-10/TNF-alpha, IL-10/interferon (IFN)-gamma, IL-10/IL-6 and sTNFRII/TNF-alpha ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-alpha receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. Conclusions: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction of regulatory cytokines may be a critical mechanism protecting vivax malaria patients from severe clinical complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we determined whether the treatment of asymptomatic parasites carriers (APCs), which are frequently found in the riverside localities of the Brazilian Amazon that are highly endemic for malaria, would decrease the local malaria incidence by decreasing the overall pool of parasites available to infect mosquitoes. In one village, the treatment of the 19 Plasmodium falciparum-infected APCs identified among the 270 residents led to a clear reduction (Z = -2.39, p = 0.017) in the incidence of clinical cases, suggesting that treatment of APCs is useful for controlling falciparum malaria. For vivax malaria, 120 APCs were identified among the 716 residents living in five villages. Comparing the monthly incidence of vivax malaria in two villages where the APCs were treated with the incidence in two villages where APCs were not treated yielded contradictory results and no clear differences in the incidence were observed (Z = -0.09, p = 0.933). Interestingly, a follow-up study showed that the frequency of clinical relapse in both the treated and untreated APCs was similar to the frequency seen in patients treated for primary clinical infections, thus indicating that vivax clinical immunity in the population is not species specific but only strain specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods: Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30-45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings: Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion: Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T-reg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T-reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-gamma production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-alpha and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T-reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Studies in South-East Asia have suggested that early diagnosis and treatment with artesunate (AS) and mefloquine (MQ) combination therapy may reduce the transmission of Plasmodium falciparum malaria and the progression of MQ resistance. Methods: The effectiveness of a fixed-dose combination of AS and MQ (ASMQ) in reducing malaria transmission was tested in isolated communities of the Jurua valley in the Amazon region. Priority municipalities within the Brazilian Legal Amazon area were selected according to pre-specified criteria. Routine national malaria control programmatic procedures were followed. Existing health structures were reinforced and health care workers were trained to treat with ASMQ all confirmed falciparum malaria cases that match inclusion criteria. A local pharmacovigilance structure was implemented. Incidence of malaria and hospitalizations were recorded two years before, during, and after the fixed-dose ASMQ intervention. In total, between July 2006 and December 2008, 23,845 patients received ASMQ. Two statistical modelling approaches were applied to monthly time series of P. falciparum malaria incidence rates, P. falciparum/Plasmodium vivax infection ratio, and malaria hospital admissions rates. All the time series ranged from January 2004 to December 2008, whilst the intervention period span from July 2006 to December 2008. Results: The ASMQ intervention had a highly significant impact on the mean level of each time series, adjusted for trend and season, of 0.34 (95% CI 0.20 - 0.58) for the P. falciparum malaria incidence rates, 0.67 (95% CI 0.50 - 0.89) for the P. falciparum/P. vivax infection ratio, and 0.53 (95% CI 0.41 - 0.69) for the hospital admission rates. There was also a significant change in the seasonal (or monthly) pattern of the time series before and after intervention, with the elimination of the malaria seasonal peak in the rainy months of the years following the introduction of ASMQ. No serious adverse events relating to the use of fixed-dose ASMQ were reported. Conclusions: In the remote region of the Jurua valley, the early detection of malaria by health care workers and treatment with fixed-dose ASMQ was feasible and efficacious, and significantly reduced the incidence and morbidity of P. falciparum malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Placental malaria (PM) is one major feature of malaria during pregnancy. A murine model of experimental PM using BALB/c mice infected with Plasmodium berghei ANKA was recently established, but there is need for additional PM models with different parasite/host combinations that allow to interrogate the involvement of specific host genetic factors in the placental inflammatory response to Plasmodium infection. Methods: A mid-term infection protocol was used to test PM induction by three P. berghei parasite lines, derived from the K173, NK65 and ANKA strains of P. berghei that fail to induce experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. Parasitaemia course, pregnancy outcome and placenta pathology induced by the three parasite lines were compared. Results: The three P. berghei lines were able to evoke severe PM pathology and poor pregnancy outcome features. The results indicate that parasite components required to induce PM are distinct from ECM. Nevertheless, infection with parasites of the ANKA Delta pm4 line, which lack expression of plasmepsin 4, displayed milder disease phenotypes associated with a strong innate immune response as compared to infections with NK65 and K173 parasites. Conclusions: Infection of pregnant C57BL/6 females with K173, NK65 and ANKA Delta pm4 P. berghei parasites provide experimental systems to identify host molecular components involved in PM pathogenesis mechanisms.