949 resultados para Magnetic Stimulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies on handedness have often reported functional asymmetries in corticomotor excitability (CME) associated with voluntary movement. Recently, we have shown that the degree of post-exercise corticomotor depression (PED) and increase in short-interval cortical inhibition (SICI) after a repetitive finger movement task was less when the task was performed at a maximal voluntary rate (MVR) than when it was performed at a submaximal sustainable rate (SR). In the current study, we have compared the time course of PED and SICI in the dominant (DOM) and nondominant (NDOM) hands after an MVR and SR finger movement task to determine the influence of hand dominance and task demand. We tracked motor-evoked potential (MEP) amplitude from the first dorsal interosseous muscle of the DOM and NDOM hand for 20 min after a 10-s index finger flexion-extension task at MVR and SR. For all hand-task combinations, we report a period of PED and increased SICI lasting for up to 8 min. We find that the least demanding task, one that involved index finger movement of the DOM hand at SR, was associated with the greatest change in PED and SICI from baseline (63.6±5.7% and 79±2%, P<0.001, PED and SICI, respectively), whereas the most demanding task (MVR of the NDOM hand) was associated with the least change from baseline (PED: 88.1±3.6%, SICI: 103±2%; P<0.001). Our findings indicate that the changes in CME and inhibition associated with repetitive finger movement are influenced both by handedness and the degree of demand of the motor task and are inversely related to task demand, being smallest for an MVR task of the NDOM hand and greatest for an SR task of the DOM hand. The findings provide additional evidence for differences in neuronal processing between the dominant and nondominant hemispheres in motor control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcranial magnetic stimulation has been used to study changes in central excitability associated with motor tasks. Recently, we reported that a finger flexion–extension task performed at a maximal voluntary rate (MVR) could not be sustained and that this was not due to muscle fatigue, but was more likely a breakdown in central motor control. To determine the central changes that accompany this type of movement task, we tracked motor-evoked potential (MEP) amplitude from the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) muscles of the dominant hand in normal subjects for 20 min after a 10 sec index finger flexion–extension task performed at MVR and at a moderate sustainable rate (MSR) and half the MSR (MSR/2). The FDI MEP amplitude was reduced for up to 6–8 min after each of the tasks but there was a greater and longer-lasting reduction after the MSR and MSR/2 tasks compared to the MVR task. There was a similar reduction in the amplitude of the FDI MEP after a 10 sec cyclic index finger abduction–adduction task when the FDI was acting as the prime mover. The amplitude of the MEP recorded from the inactive APB was also reduced after the flexion–extension tasks, but to a lesser degree and for a shorter duration. Measurements of short-interval cortical inhibition revealed an increase in inhibition after all of the finger flexion–extension tasks, with the MSR task being associated with the greatest degree of inhibition. These findings indicate that a demanding MVR finger movement task is followed by a period of reduced corticomotor excitability and increased intracortical inhibition. However, these changes also occur with and are greater with slower rates of movement and are not specific for motor demand, but may be indicative of adaptive changes in the central motor pathway after a period of repetitive movement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: Strength training of one limb results in a substantial increase in the strength of the untrained limb, however, it remains unknown what the corticospinal responses are following either eccentric or concentric strength training and how this relates to the cross-education of strength. The aim of this study was to determine if eccentric or concentric unilateral strength training differentially modulates corticospinal excitability, inhibition and the cross-transfer of strength. METHODS: Changes in contralateral (left limb) concentric strength, eccentric strength, motor-evoked potentials, short-interval intracortical inhibition and silent period durations were analyzed in groups of young adults who exercised the right wrist flexors with either eccentric (N=9) or concentric (N=9) contractions for 12 sessions over 4weeks. Control subjects (N=9) did not train. RESULTS: Following training, both groups exhibited a significant strength gain in the trained limb (concentric group increased concentric strength by 64% and eccentric group increased eccentric strength by 62%) and the extent of the cross-transfer of strength was 28% and 47% for the concentric and eccentric group, respectively, which was different between groups (P=0.031). Transcranial magnetic stimulation revealed that eccentric training reduced intracortical inhibition (37%), silent period duration (15-27%) and increased corticospinal excitability (51%) compared to concentric training for the untrained limb (P=0.033). There was no change in the control group. CONCLUSION: The results show that eccentric training uniquely modulates corticospinal excitability and inhibition of the untrained limb to a greater extent than concentric training. These findings suggest that unilateral eccentric contractions provide a greater stimulus in cross-education paradigms and should be an integral part of the rehabilitative process following unilateral injury to maximize the response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dysfunctional mirror neuron systems have been proposed to contribute to the social cognitive deficits observed in schizophrenia. A few studies have explored mirror systems in schizophrenia using various techniques such as TMS (levels of motor resonance) or EEG (levels of mu suppression), with mixed results. This study aimed to use a novel multimodal approach (i.e. concurrent TMS and EEG) to further investigate mirror systems and social cognition in schizophrenia. Nineteen individuals with schizophrenia or schizoaffective disorder and 19 healthy controls participated. Single-pulse TMS was applied to M1 during the observation of hand movements designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded brain activity. Participants also completed facial affect recognition and theory of mind tasks. The schizophrenia group showed significant deficits in facial affect recognition and higher level theory of mind compared to healthy controls. A significant positive relationship was revealed between mu suppression and motor resonance for the overall sample, indicating concurrent validity of these measures. Levels of mu suppression and motor resonance were not significantly different between groups. These findings indicate that in stable outpatients with schizophrenia, mirror system functioning is intact, and therefore their social cognitive difficulties may be caused by alternative pathophysiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Age-related neurodegeneration may interfere with the ability to respond to cross-limb transfer, whereby bilateral performance improvements accompany unilateral practice. We investigated whether transcranial direct current stimulation (tDCS) would facilitate this phenomena in older adults. METHODS: 12 young and 12 older adults underwent unilateral visuomotor tracking (VT), with anodal or sham-tDCS over the ipsilateral motor cortex. Transcranial magnetic stimulation (TMS) assessed motor evoked potentials (MEPs) and short interval intracortical inhibition (SICI). Performance was quantified through a VT error. Variables were assessed bilaterally at baseline and post-intervention. RESULTS: The trained limb improved performance, facilitated MEPs and released SICI in both age groups. In the untrained limb, VT improved in young for both sham and anodal-tDCS conditions, but only following anodal-tDCS for the older adults. MEPs increased in all conditions, except the older adult's receiving sham. SICI was released in both tDCS conditions for young and old. CONCLUSION: Following a VT task, older adults still display use-dependent plasticity. Although no significant age-related differences between the outcome measures, older adults exhibited significant cross-limb transfer of performance following anodal-tDCS, which was otherwise absent following motor practice alone. SIGNIFICANCE: These findings provide clinical implications for conditions restricting the use of one limb, such as stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: A single session of skill or strength training can modulate the primary motor cortex (M1), which manifests as increased corticospinal excitability (CSE) and decreased short-latency intra-cortical inhibition (SICI). We tested the hypothesis that both skill and strength training can propagate the neural mechanisms mediating cross-transfer and modulate the ipsilateral M1 (iM1). METHODS: Transcranial magnetic stimulation (TMS) measured baseline CSE and SICI in the contralateral motor cortex (cM1) and iM1. Participants completed 4 sets of unilateral training with their dominant arm, either visuomotor tracking, metronome-paced strength training (MPST), self-paced strength training (SPST) or control. Immediately post training, TMS was repeated in both M1s. RESULTS: Motor-evoked potentials (MEPs) increased and inhibition was reduced for skill and MPST training from baseline in both M1s. Self-paced strength training and control did not produce changes in CSE and SICI when compared to baseline in both M1s. After training, skill and MPST increased CSE and decreased SICI in cM1 compared to SPST and control. Skill and MPST training decreased SICI in iM1 compared to SPST and control post intervention; however, CSE in iM1 was not different across groups post training. CONCLUSION: Both skill training and MPST facilitated an increase in CSE and released SICI in iM1 and cM1 compared to baseline. Our results suggest that synchronizing to an auditory or a visual cue promotes neural adaptations within the iM1, which is thought to mediate cross transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Social cognitive difficulties are common in the acute phase of bipolar disorder and, to a lesser extent, during the euthymic stage, and imaging studies of social cognition in euthymic bipolar disorder have implicated mirror system brain regions. This study aimed to use a novel multimodal approach (i.e., including both transcranial magnetic stimulation (TMS) and electroencephalogram (EEG)) to investigate mirror systems in bipolar disorder. Fifteen individuals with euthymic bipolar disorder and 16 healthy controls participated in this study. Single-pulse TMS was applied to the optimal site in the primary motor cortex (M1), which stimulates the muscle of interest during the observation of hand movements (goal-directed or interacting) designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded mu rhythm modulation concurrently. Results revealed that the patient group showed significantly less mu suppression compared to healthy controls. Surprisingly, motor resonance was not significantly different overall between groups; however, bipolar disorder participants showed a pattern of reduced reactivity on some conditions. Although preliminary, this study indicates a potential mirror system deficit in euthymic bipolar disorder, which may contribute to the pathophysiology of the disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mirror therapy (MT) is being used as a rehabilitation tool in various diseases, including stroke. Although some studies have shown its effectiveness, little is known about neural mechanisms that underlie the rehabilitation process. Therefore, this study aimed at assessing cortical neuromodulation after a single MT intervention in ischemic stroke survivors, by means of by functional Magnetic Resonance Imaging (fMRI) and Transcranial Magnetic Stimulation (TMS). Fifteen patients participated in a single thirty minutes MT session. fMRI data was analyzed bilaterally in the following Regions of Interest (ROI): Supplementary Motor Area (SMA), Premotor cortex (PMC), Primary Motor cortex (M1), Primary Sensory cortex (S1) and Cerebellum. In each ROI, changes in the percentage of occupation and beta values were computed. Group fMRI data showed a significant decreased in the percentage of occupation in PMC and cerebellum, contralateral to the affected hand (p <0.05). Significant increase in beta values was observed in the following contralateral motor areas: SMA, Cerebellum, PMC and M1 (p<0,005). Moreover, a significant decrease was observed in the following ipsilateral motor areas: PMC and M1 (p <0,001). In S1 a bilateral significant decrease (p<0.0005) was observed.TMS consisted of the analysis of Motor Evoked Potential (MEP) of M1 hotspot. A significant increase in the amplitude of the MEP was observed after therapy in the group (p<0,0001) and individually in 4 patients (p <0.05). Altogether, our results imply that single MT intervention is already capable of promoting changes in neurobiological markers toward patterns observed in healthy subjects. Furthermore, the contralateral hemisphere motor areas changes are opposite to the ones in the ipsilateral side, suggesting an increase system homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The record of electrical activity of elevator muscles in mandible is important for the evaluation of muscular potency and diagnosis of neuromuscular pathologies, which allows prevention and treatment. The aim of this study was to define silent periods (SPs) and the importance in dentistry and compare the SPs in masticatory muscles of dentate and edentulous patients wearing prosthesis considering the presence or absence of craniomandibular dysfunction (CMD).Materials and Methods: Literature review in PubMed database.Discussion: Silent periods are isolated pulses of transcranial magnetic stimulation in the primary motor cortex during voluntary muscular activity that generates an interruption of muscular activity for hundredths of milliseconds. The SP duration depends on the patient (dentate or edentulous), type of stimulus, and presence of CMD.Conclusions: The SP is higher in complete edentulous patients and in individuals with occlusal disharmonies than in dentate patients without CMDs. The treatment of CMDs through occlusal therapy decreases SP duration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a novel technique of non-invasive brain stimulation which has been used to treat several neuropsychiatric disorders such as major depressive disorder, chronic pain and epilepsy. Recent studies have shown that the therapeutic effects of rTMS are associated with plastic changes in local and distant neural networks. In fact, it has been suggested that rTMS induces long-term potentiation (LTP) and long-term depression (LTD) - like effects. Besides the initial positive clinical results; the effects of rTMS are stilt mixed. Therefore new toots to assess the effects of plasticity non-invasively might be useful to predict its therapeutic effects and design novel therapeutic approaches using rTMS. In this paper we propose that brain-derived neurotrophic factor (BDNF) might be such a tool. Brain-derived neurotrophic factor is a neurotrophin that plays a key role in neuronal survival and synaptic strength, which has also been studied in several neuropsychiatric disorders. There is robust evidence associating BDNF with the LTP/LTD processes, and indeed it has been proposed that BNDF might index an increase or decrease of brain activity - the `yin and yang` BDNF hypothesis. In this article, we review the initial studies combining measurements of BDNF in rTMS clinical trials and discuss the results and potential usefulness of this instrument in the field of rTMS. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the influence of cueing on the performance of untrained and trained complex motor responses. Healthy adults responded to a visual target by performing four sequential movements (complex response) or a single movement (simple response) of their middle finger. A visual cue preceded the target by an interval of 300, 1000, or 2000 ms. In Experiment 1, the complex and simple responses were not previously trained. During the testing session, the complex response pattern varied on a trial-by-trial basis following the indication provided by the visual cue. In Experiment 2, the complex response and the simple response were extensively trained beforehand. During the testing session, the trained complex response pattern was performed in all trials. The latency of the untrained and trained complex responses decreased from the short to the medium and long cue-target intervals. The latency of the complex response was longer than that of the simple response, except in the case of the trained responses and the long cue-target interval. These results suggest that the preparation of untrained complex responses cannot be completed in advance, this being possible, however, for trained complex responses when enough time is available. The duration of the 1st submovement, 1st pause and 2nd submovement of the untrained and the trained complex responses increased from the short to the long cue-target interval, suggesting that there is an increase of online programming of the response possibly related to the degree of certainty about the moment of target appearance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

These updated guidelines are based on a first edition of the World Federation of Societies of Biological Psychiatry Guidelines for Biological Treatment of Schizophrenia published in 2005. For this 2012 revision, all available publications pertaining to the biological treatment of schizophrenia were reviewed systematically to allow for an evidence-based update. These guidelines provide evidence-based practice recommendations that are clinically and scientifically meaningful and these guidelines are intended to be used by all physicians diagnosing and treating people suffering from schizophrenia. Based on the first version of these guidelines, a systematic review of the MEDLINE/PUBMED database and the Cochrane Library, in addition to data extraction from national treatment guidelines, has been performed for this update. The identified literature was evaluated with respect to the strength of evidence for its efficacy and then categorised into six levels of evidence (A-F; Bandelow et al. 2008b, World J Biol Psychiatry 9: 242). This first part of the updated guidelines covers the general descriptions of antipsychotics and their side effects, the biological treatment of acute schizophrenia and the management of treatment-resistant schizophrenia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depression is the most frequent mental disorder in older people, often causing emotional distress and reduced quality of life. Despite its clinical significance, depression remains underdiagnosed and inadequately treated in older patients. Regarding prognosis, data suggest that almost 70% of patients, treated long enough and with appropriate doses, recover from an index episode of depression. Antidepressants are efficient for treating depressed outpatients with several comorbid physical diseases as well as hospitalized patients, with selective serotonin reuptake inhibitors being the antidepressants of choice for older patients. Available data can guide pharmacological treatment in both the acute and maintenance stages, but further research is required to guide clinical strategies when remission is not achieved. Approaches for the management of resistance to treatment are summarized, including optimization strategies, drug changes, algorithms, and combined and augmentation pharmacological treatments. Finally, additional therapeutic choices such as electroconvulsive therapy, transcranial magnetic stimulation, and integrated psychotherapy are presented.