915 resultados para Magma Types


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mafic granulite xenoliths have been extensively concerned over the recent years because they are critical not only to studies of composition and evolution of the deep parts of continental crust but to understanding of the crust-mantle interaction. Detailed petrology, geochemistry and isotope geochronology of the Early Mesozoic mafic-ultramafic cumulate xenoliths and mafic granulite xenoliths and their host diorites from Harqin area, eastern Inner-Mongolia have been studied here. Systematic Rb-Sr isochron, ~(40)Ar-~(39)Ar and K-Ar datings for mafic-ultramafic cumulate xenoliths give ages ranging from 237Ma to 221Ma. Geochemical research and forming temperature and pressure estimates suggest that cumulates are products of the Early Mesozoic mantle-derived magmatic underplating and they formed in the magmatic ponds at the lowermost of the continental crust and are later enclaved by the dioritic magma. Detailed study on the first-discovered mafic granulite xenoliths reveals that their modal composition, mineral chemistry and metamorphic P-T conditions are all different from those of the Precambrian granulite exposed on the earth surface of the North China craton. High-resolution zircon U-Pb dating suggests that the granulite facies metamorphism may take place in 253 ~ 236Ma. Hypersthene single mineral K-Ar dating gives an age of 229Ma, which is believed to represent a cooling age of the granulite. As the host rock of the cumulate and granulite xenoliths, diorites intruded into Archean metamorphic rocks and Permian granite. They are mainly composed of grandodiorite, tonalite and monzogranite and show metaluminous and calc-alkaline features. Whole rock and single mineral K-Ar dating yields age of 221 ~ 223Ma, suggesting a rapid uplift in the forming process of the diorites. Detailed field investigation and geochemical characteristics indicate that these diorites with different rock types are comagmatic rocks, and they have no genetic correlation with cumulate and granulite xenoliths. Geochemical model simulating demonstrates that these diorites in different lithologies are products of highly partial melting of Archean amphibolite. It is considered that the Early Mesozoic underplating induced the intrusion of diorites, and it reflects an extensional geotectonic setting. Compression wave velocity V_P have been measured on 10 representative rock samples from the Early Mesozoic granulite and mafic-ultramafic cumulate xenoliths population as an aid to interpret in-situ seismic velocity data and investigating velocity variation with depth in a mafic lower crust. The experiments have been carried out at constant confining pressures up to 1000MPa and temperatures ranging from 20 ℃ to around 1300 ℃, using the ultrasonic transmission technique. After corrections for estimated in situ crustal pressures and temperatures, elastic wave velocities range from 6.5 ~ 7.4 km s~(-1). On the basis of these experimental data, the Early-Mesozoic continental compression velocity profile has also been reestablished and compared with those of the present and of the different tectonic environments in the world. The result shows that it is similar to the velocity structure of the extensional tectonic area, providing new constraints on the Early Mesozoic continental structure and tectonic evolution of the North-China craton. Combining with some newly advancements about the regional geology, the thesis further proposes some constraints on the Mesozoic geotectonic evolution history, especially the features of deep geology of the North China craton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a kind of special lithologic ones, Igneous rock oil and gas pool is more and more paid attention, and it has different forming condition and distribution from conventional ones, such as various terrane distribution types, serious reservoir anisotropy, complicated hydrocarbon-bearing, so there is not successful experience to follow for exploration and development of this complex subtle oil and gas pool at present. For an example of Igneous oil and gas pool of Luo151 area in Zhanhua seg, Eastern China, this article study the difficult problem, including petrologic nd lithofacies analysis, Origin, invasion age and times of Igneous rock, reservoir anisotropy, Geological Modeling, Igneous reservoir synthesis evaluation. forming condition and distribution are studied synthetically, and an integrated method to predict igneous rock oil and gas pool is formed, which is evaluated by using development data. The Igneous rock is mainly diabase construction in Luo151 area of Zhanhua Sag, and petrologic types include carbonaceous slate, hornfels, and diabases. Based on analyzing synthetically petrologic component, texture and construct, 4 lithofacies zones, such as carbonaceous slate subfacies, hornfels subfacies containing cordierite and grammite, border subfacies and central subfacies, are divided in the diabase and wall rock. By studying on isotopic chronology, terrane configuration and imaging logging data, the diabase intrusion in Zhanhua Sag is formed by tholeiite magma emplacing in Shahejie formation stratum on the rift tension background Lower Tertiary in North China. The diabase intrusion of Luo151 is composed possibly of three periods magma emplacement. There is serious anisotropy in the diabase reservoirs of Luo151 in Zhanhua Sag. Fracture is primary reservoir space, which dominated by tensile fracture in high obliquity, and the fracture zones are mainly developed round joint belt of igneous rock and wall rock and position of terrane thickness changing rapidly. The generation materials of the reservoirs in Luo151 igneous oil pools consist of Intergranular micropore hornfels, condensate blowhole-solution void diabase condensate edge, the edge and center of the condensate seam diabase, of which are divided into horizontal, vertical and reticulated cracks according fracture occurrence. Based on the above research, a conceptual model of igneous rock reservoir is generated, which is vertically divided into 4 belts and horizontally 3 areas. It is built for the first time that classification evaluation pattern of igneous rock reservoir in this area, and 3 key wells are evaluated. The diabase construction is divided into grammite hornfels micropore type and diabase porous-fracture type reservoirs. The heavy mudstone layers in Third Member of Shahejie formation (Es3) provide favorable hydrocarbon source rock and cap formation, diabase and hornfels belts serve as reservoirs, faults and microcracks in the wall rocks as type pathways for oil and gas migration. The time of diabase invasion was about in the later deposition period of Dongying Formation and the middle of that of Guantao Formation, the oil generated from oil source rock of Es3 in the period of the Minghuazhen formation and is earlier more than the period of diabase oil trap and porous space forming. Based on geological and seismic data, the horizon of igneous rocks is demarcated accurately by using VSP and synthetic seismogram, and the shape distribution and continuity of igneous rocks are determined by using cross-hole seismic technology. The reservoir capability is predicted by using logging constraining inversion and neural network technology. An integrated method to predict igneous rock oil and gas pool is formed. The study is appraised by using development data. The result show the reservoir conceptual model can guide the exploration and development of oil pool, and the integrated method yielded marked results in the production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, chimney structure has been proved one of important indicators and a useful guide to major petroleum fields exploration through their exploration history both at home and abroad. Chimney structure, which has been called "gas chimney" or "seismic chimney", is the special fluid-filled fracture swarm, which results from the boiling of active thermal fluid caused by abruptly decreasing of high pressure and high temperature in sedimentary layers of upper lithosphere. Chimney structure is well developed in continental shelf basin of East China Sea, which indicates the great perspectives of petroleum resources there. However, the chimney structure also complicated the petroleum accumulation. So the study of chimney structure on its formation, its effect on occurrence and distribution of petroleum fields is very important not only on theoretical, but also on its applied research. It is for the first time to make a clear definition of chimney structure in this paper, and the existence and practical meaning of chimney structure are illustrated. Firstly, on the viewpoint of exploration, this will amplify exploration area or field, not only in marine, but also on continent. Secondly, this is very important to step-by-step exploration and development of petroleum fields with overpressure. Thirdly, this will provide reference for the study on complex petroleum system with multi-sources, commingled sources and accumulation, multi-stage accumulations, and multi-suits petroleum system in the overlay basin. Fourthly, when the thermal fluid enters the oceanic shallow layer, it can help form gas hydrate under favorable low-temperature and high-pressure conditions. Meanwhile, the thermal fluid with its particular component and thermal content will affect the physical, chemical and ecological environments, which will help solving the problem of global resources and environment. Beginning from the regional tectonic evolution characteristics, this paper discussed the tectonic evolution history of the Taibei depression, then made an dynamical analysis of the tectonic-sedimentary evolution during the Mesozoic and Cenozoic for the East China Sea basin. A numerical model of the tectonic-thermal evolution of the basin via the Basin-Mod technique was carried out and the subsidence-buried history and thermal history of the Taibei depression were inverse calculated: it had undergone a early rapid rift and sag, then three times of uplift and erosion, and finally depressed and been buried. The Taibei depression contains a huge thick clastic sedimentary rock of marine facies, transitional facies and continental facies on the complex basement of ante-Jurassic. It is a part of the back-arc rifting basins occurred during the Mesozoic and Cenozoic. The author analyzed the diagenesis and thermal fluid evolution of this area via the observation of cathodoluminescence, scanning electron microscope and thin section, taking advantage of the evidences of magma activities, paleo-geothermics and structural movement, the author concluded that there were at least three tectonic-thermal events and three epochs of thermal-fluid activities; and the three epochs of thermal-fluid activities were directly relative to the first two tectonic-thermal events and were controlled by the generation and expulsion of hydrocarbon in the source rock simultaneously. Based on these, this paper established the corresponding model between the tectonic-thermal events and the thermal-fluid evolution of the Taibei Depression, which becomes the base for the study on the chimney structures. According to the analyses of the gas-isotope, LAM spectrum component of fluid inclusion, geneses of CO_2 components and geneses of hydrocarbon gases, the author preliminarily verified four sources of the thermal fluid in the Taibei Depression: ① dehydration of mud shale compaction, ② expulsion of hydrocarbon in the source rock; ③ CO_2 gas hydro-thermal decomposition of carbonatite; ④magma-derived thermal fluid including the mantle magma water and volatile components (such as H_2O, CO_2, H_2S, SO_2, N_2 and He etc.). On the basis of the vitrinite reflectance (Ro), homogenization temperature of fluid inclusion, interval transit time of major well-logging, mud density of the wells, measured pressure data and the results of previous studies, this paper analyzed the characteristics of the geothermal fields and geo-pressure fields for the various parts in this area, and discussed the transversal distribution of fluid pressure. The Taibei depression on the whole underwent a temperature-loss process from hot basin to cold basin; and locally high thermal anomalies occurred on the regional background of moderate thermal structure. The seal was primarily formed during the middle and late Paleocene. The overpressured system was formed during the middle and late Eocene. The formation of overpressured system in Lishui Sag underwent such an evolutionary process as "form-weaken-strengthen-weaken". Namely, it was formed during the middle and late Eocene, then was weakened in the Oligocene, even partly broken, then strengthened after the Miocene, and finally weakened. The existence of the thermal fluid rich in volatile gas is a physical foundation for the boiling of the fluid, and sharply pressure depletion was the major cause for the boiling of the fluid, which suggests that there exists the condition for thermal fluid to boil. According to the results of the photoelastic simulation and similarity physical experiments, the geological condition and the formation mechanism of chimnestructures are summarized: well compartment is the prerequisite for chimney formation; the boiling of active thermal fluid is the original physical condition for chimney formation; The local place with low stress by tension fault is easy for chimney formation; The way that thermal fluid migrates is one of the important factors which control the types of chimney structures. Based on where the thermal fluid come from and geometrical characteristics of the chimney structures, this paper classified the genetic types of chimney structures, and concluded that there existed three types and six subtypes chimney structures: organic chimney structures generated by the hydrocarbon-bearing thermal fluid in middle-shallow layers, inorganic and commingling-genetic chimney structures generated by thermal fluid in middle-deep layers. According to the seismic profiles interpretations, well logging response analysis and mineralogical and petrological characteristics in the study area, the author summarized the comprehensive identification marks for chimney structures. Especially the horizon velocity analysis method that is established in this paper and takes advantage of interval velocity anomaly is a semi-quantitative and reliable method of chimney structure s identification. It was pointed out in this paper that the occurrence of the chimney structures in the Taibei depression made the mechanism of accumulation complicated. The author provided proof of episodic accumulation of hydrocarbon in this area: The organic component in the boiling inclusion is the trail of petroleum migration, showing the causality between the boiling of thermal fluid and the chimney structures, meanwhile showing the paroxysmal accumulation is an important petroleum accumulation model. Based on the evolutionary characteristics of various types of chimney structures, this paper discussed their relationships with the migration-accumulation of petroleum respectively. At the same time, the author summarized the accumulating-dynamical models associated with chimney structures. The author analyzed such accumulation mechanisms as the facies state, direction, power of petroleum migration, the conditions of trap, the accumulation, leakage and reservation of petroleum, and the distribution rule of petroleum. The author also provides explanation for such practical problems the existence of a lot of mantle-derived CO_2, and its heterogeneous distribution on plane. By study on and recognition for chimney structure, the existence and distribution of much mantle-derived CO_2 found in this area are explained. Caused by tectonic thermal activities, the deep magma with much CO_2-bearing thermal fluid migrate upward along deep fault and chimney structures, which makes two wells within relatively short distance different gas composition, such as in well LF-1 and well LS36-1-1. Meanwhile, the author predicted the distribution of petroleum accumulation belt in middle-shallow layer for this area, pointed out the three favorable exploration areas in future, and provided the scientific and deciding references for future study on the commingling-genetic accumulation of petroleum in middle-deep layer and the new energy-gas hydrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jiyang & Changwei depressions are two neighboring depressions in Bahai Bay Basin, the famous oil rich basin in East China. The exploration activities in the past 40 years has proved that, within the basins, there exists not only plentiful sandstone hydrocarbon reservoirs (conventional), but also abundant special reservoirs as igneous rock, mudstone and conglomerate ones which have been knowing as the unconventional in the past, and with the prospecting activity is getting more and more detailed, the unconventional reservoirs are also getting more and more important for further resources, among which, the igneous lithological reservoir be of significance as a new research and exploration area. The purpose of this paper is, with the historical researches and data as base, the System Theory, Practice Theory and Modern Comprehensive Petroleum Geology Theory as guide, the theoretical and practice break through as the goal, and the existing problems in the past as the break through direction, to explore and establish a valid reservoir formation and distribution models for igneous strata in the profile of the eastern faulted basins. After investigating the distribution of the igneous rocks and review the history of the igneous rocks reservoirs in basins, the author focused on the following issues and correspondingly the following progresses have been made: 1.Come to a new basin evolution and structure model named "Combined-Basin-bodies Model" for Jiyang even Eastern faulted basins based on the study on the origin and evolution of Jiyang & Changwei basins, depending on this model, every faulted basin in the Bo-hai Bay Basin is consisted of three Basin-Bodies including the Lower (Mesozoic), Middle (Early Tertiary) and the Upper (Late Tertiary) Bodies, each evolved in different geo-stress setting and with different basin trend, shape and igneous-sedimentary buildings system, and from this one to next one, the basin experienced a kind of process named "shape changing" and "Style changing". 2. Supposed a serious of new realizations as follows (1) There were "multi-level magma sources" including Upper mantel and the Lower, Middle and even the Upper Shell magma Chambers in the historical Magma Processes in the basins; (2) There were "multi-magma accessing or pass" from the first level (Mantel faults) to the second, third and fourth levels (that is the different levels of fault in the basin sediment strata) worked in the geo-historical and magma processes; (3) Three tectonic magma cycles and more periods have been recognized those are matched with the "Basin -body-Model" and (4)The geo-historical magma processes were non-homogeneous in time and space scale and so the magma rocks distributed in "zones" or "belts". 3. The study of magma process's effect on basin petroleum conditions have been made and the following new conclusions were reached: (1) the eruptive rocks were tend to be matched with the "caped source rock", and the magma process were favorable to the maturing of the source rocks. (2) The magma process were fruitful to the accumulation of the non-hydrocarbon reservoirs however a over magma process may damage the grade of resource rock; (3) Eruptive activity provided a fruitful environment for the formation of such new reservoir rocks as "co-eruptive turbidity sandstones" and "thermal water carbonate rocks" and the intrusive process can lead to the origin of "metamorphism rock reservoir"; (4) even if the intrusive process may cause the cap rock broken, the late Tertiary intrusive rocks may indeed provide the lateral seal and act as the cap rock locally even regionally. All above progresses are valuable for reconstructing the magma-sedimentary process history and enriching the theory system of modem petroleum geology. 4. A systematic classification system has been provided and the dominating factors for the origin and distribution of igneous rock reservoirs have been worked out based on the systematic case studies, which are as follows: (1) The classification is given based on multi-factors as the origin type, litho-phase, type of reservoir pore, reservoir ability etc., (2) Each type of reservoir was characterized in a detailed way; (3) There are 7 factors dominated the intrusive reservoir's characteristics including depth of intrusion, litho-facies of surrounding rocks, thickness of intrusive rock, intrusive facies, frequency and size of the working faults, shape and tectonic deformation of rock, erosion strength of the rock and the time of the intrusion ect., in the contrast, 4 factors are for eruptive rocks as volcanic facies, frequency and size of the working faults, strength of erosion and the thermal water processing. 5. Several new concept including "reservoir litho-facies", "composite-volcanic facies" and "reservoir system" ect. Were suggested, based on which the following models were established: (1) A seven reservoir belts model for a intrusive unit profile and further more, (2) a three layers cubic model consisted of three layer as "metamorphic roe layer", "marginal layer" and "the core"; (3) A five zones vertical reservoir sequence model consisted of five litho-facies named A, B, C, D and E for a original lava unit and furthermore three models respectively for a erosion, subsidence and faulted lava unit; (4) A composite volcanic face model for a lava cone or a composite cone that is consisted of three facies as "crater and nearby face", "middle slope" and "far slope", among which, the middle slope face is the most potential reservoir area and producible for oil & gas. 6. The concept of "igneous reservoir" was redefined as the igneous, and then a new concept of "igneous reservoir system" was supposed which means the reservoir system consisted of igneous and associated non-igneous reservoirs, with non-hydrocarbon reservoir included. 7. The origin and distribution of igneous reservoir system were probed and generalized for the exploration applications, and origin models of the main reservoir sub-systems have been established including those of igneous, related non-igneous and non-hydrocarbon. For intrusive rocks, two reservoir formation models have been suggested, one is called "Original or Primary Model", and the another one is "Secondary Model"; Similarly, the eruptive rock reservoirs were divided in three types including "Highly Produced", "Moderately Produced" and "Lowly Produced" and accordingly their formation models were given off; the related non-igneous reservoir system was considered combination of eight reservoirs, among which some ones like the Above Anticline Trap are highly produced; Also, the non-hydrocarbon. Trap system including five kinds of traps was discussed. 8. The concept models for four reservoir systems were suggested, which include the intrusive system consisted of 7 kinds of traps, the land eruptive system with 6 traps, the under water eruptive system including 6 kinds of traps and the non-hydrocarbon system combined by 5 kinds of traps. In this part, the techniques for exploration of igneous reservoir system were also generalized and probed, and based on which and the geological progresses of this paper, the potential resources and distributions of every reservoir system was evaluated and about 186 millions of reserves and eight most potential non-hydrocarbon areas were predicted and outlined. The author believe that the igneous reservoir system is a very important exploration area and its study is only in its early stage, the framework of this paper should be filled with more detailed studies, and only along way, the exploration of igneous reservoir system can go into it's really effective stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kunyushan composite granite pluton is located in northeast part of the Sulu UHP collisional belt, Jiaodong peninsula, eastern China. It is regarded as the boundary of the Jiaodong block and the Sulu UHP collisional belt. The body is unique in the Dabieshan-Sulu UHP collisional orogen for its feature of multiple intrusions of diverse types granitoid rocks in a long span after UHP the collision between the North China and the Yangtze plates in late Triassic. It can be grouped into four series on the basis of petrology and petrochemistry. They are mid-K calc-alkaline granitoids, strongly peraluminous granites, high-K calc-alkaline granitoids and syenitic granite of shoshonitic series. In this thesis, the later three types of rocks are investigated geochronologically in detail. The grain zircon U-Pb isotope dilution dating technique has been employed in this study. Zircon morphology are presented and discussion on the chemical and physical conditions of the granite formation have been carried out in addtion. Strongly peraluminous granites comprises foliated monzogranite and garnet bearing leucogranite. They occupy more than half of the area of the Kunyushan composite body. Three zircon samples of foliated monzogranites have been analyzed, they yield lower intercept ages mainly in the range of 140-150 Ma. The formation of these rocks was likely to be at 700-600 ℃, implied by zircon morphology. Two zircon samples of the garnet bearing leucogranite yield lower intercept ages from 130 Ma to 140 Ma. Zircon morphology indicate that the liquidus temperature of the magma was about 750 °C. Syenitic granite of shoshonitic series occur in the north central part of the body, and the volume is quite small contrast to other types. One zircon sample was chosen from this rock, and yield lower intercept age of 121+1.8/-2.1 Ma. Zircon morphology indicate that the liquidus temperature of this rock is up to 900 °C, which is much higher than others'. High-K calc-alkaline granitoids can be divided into two types on the basis of rock texture and structure. One is Kf-porphyritic monzogranite. It's outcrop is quite small. Zircon ages of one sample constrain the emplacement of this rock at about 112 Ma. The other is medium-grain to coarse-grain monzogranite. Zircons from it yield lower intercept age of 100.5+2.9/-4.6 Ma. The variation of zircon morphology suggest that these two monzogranites were outcomes of a single magma at different stage. The former emplaced earlier than the latter. The liquidus temperature of the magma was about 800 ℃ Inherited zircon is ubiquitous in the Kunyushan composite body. Most of the samples yield upper intercept ages of late Proterozoic. It was considered that only the Yangtze plate underwent a crustal growth during late Proterozoic among the two plates which involved into the UHP collision. Inherited zircon of about 200 Ma can also be observed in strongly peraluminous and high-K calc-alkaline granitoids. Two samples out of eight yield upper intercept ages of Achaean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studied the metallotectonics, altered rocks, altered minerals and fluid inclusions. The conclusions are: (1)The gold deposits in Jiaodong district were formed quickly uplifted tectonic setting which was induced by the Mantle doming in Mesozoic era. (2)Both Jiaojia-type and Linglong-type gold mineralizations were formed in the same tectonic-fluid system. (3) The Ar-Ar age of the earlier stage of the gold mineralization is 114~116Ma. (4)The development of the plaiting ore-control tectonic system underwent four stagesrcounterclockwise ductile compresso-shearing, clockwise brittle tenso-shearing and counterclockwise brittle compresso-shearing and brittle normal faulting after mineralization. (5)The mineralization has five stages: quartz and k-feldspar stage, quartz and ferro-carbonate and pyrite stage, quartz and chalcopyrite stage, pyrite and sericite and quartz stage and carbonate stage, and they make up four ore-types: red ore, vein ore, mottled ore and grey ore. (6) The features of mineralizations and ore-forming fluids in different stages are different. But the ore-forming fluids are rich in Si, Fe, P_2O_5, H_2O, CO_2, SO_4~(2-), K~+, Na~+, Ca~(2+) and Cl~- in general and their salinities are from 4 to 18 NaClwt%. (7) The ore-forming fluids came mainly from the Mantle in early stage, then mainly from magma, and mainly from meteoric water in the last stage. (8) Au in the ore-forming fluid was mainly carried in the form of complex of Au and S. (9)The temperature of ore-forming fluid is from 350℃ to 120℃and its pressure is from 20MPa to 38MPa. (10)The gold vein composed by quartz, ferro-carbonate, chalcopyrite and pyrite (vein ore) was filled in the tensional fracture in the top of the magma dome. The disseminated ore bodies composed by pyrite, sericite and quartz (grey ore) was metasomatized in the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, which is placed in the flank top of magma dome. In the joint and fracture induced by the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, veiniet and stockwork ore (red ore) and veinlet-disseminated ore (mottled ore) composed by quartz and pyrite was formed. (ll)Fluid boiling maybe one of the form of the ore-forming substances precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tiezhai intrusive complex is located in the north of the Luxi block, Shandong province, eastern China. It lies ~30 km west of the Tanlu fault, and is at the cross of the Wujing and Jiushan faults. The Tiezhai complex was formed about 120~130 Ma, when large-scale magmatism was active in eastern part of North China. This paper carries out petrochemical and geochemical study on the Tiezhai intrusive complex, and discusses its genesis in detail. The Tiezhai intrusive complex can be subdivided into three rock series. The first is the gabbro-diorite series formed in early stage. Its composition variation shows 01 and Cpx fractional crystallization trend. The second is the porphyritic diorite and monzonite series, showing dominating Hb fractional differentiation. Their composition variation shows Hb fractional crystallization trend. The third is the porphyritic quartz monzonite with K-feldspar megacrysts, showing weakly Hb and Bi fractional crystallization trend. All types of rocks in the Tiezhai complex are belonging to the high-K cac-alkaline series. They have elevated Sr (450-1660 ppm), Ba (210-1780 ppm) and relatively low Rb (30-100 ppm). For the gabbro-dioritic rocks in the early stage, the abundances of Ni (20-250 ppm), Cr (50-350 ppm), V(l30-250 ppm) and Co (20-40 ppm) are high, indicating a mantle origin. All rocks have negative anormalies of Nb, Ta, Ti and P, and enriched LREE and strong differentiated REE patterns. The porphyritic monzonites and quartz monzonites have very low HREE, Yb and Y contents and positive Eu anormalies, similar to adakite. Most rocks have lowε_(Nd)(t) of-1.5~-10.9, and high (~(87)Sr/~(86)Sr)_i of 0.704~0.709. The data have characters of enriched lithosphere mantle (EMI). In summary, the Tiezhai intrusive complex was inferred to be generated by a mantle derived magma through fractional crystallization. When the primary magma gathered in some place between crust and mantle, the crystallization started and causing magma evolution. The remaining / evolved magma ascended and emplaced again and again in the upper crust in Tiezhai area. Then Tiezhai complex formed. The porphyritic monzonites and quartz monzonites have major and trace element characters of typical adakite, but they are likely to be generated by Hb fractional crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The platinum-group elements (PGE), including Os, Ir, Ru, Rh, Pt and Pd, axe strongly siderophile and chalcophile. On the basis of melting temperature, the PGE may be divided into two groups: the Ir group (IPGE, >2000°C) consisting of Os, Ir and Ru, and the Pd group (PPGE, <20GO°C) consisting of Rh, Pt and Pd. Because of their unique geochemical properties, PGE provide critical information on global-scale differentiation processes, such as core-mantle segregation, late accretionary history, and core-mantle exchange. In addition, they may be used to identify magma source regions and unravel complex petrogenetic processes including partial melting, melt percolation and metasomatism in the mantle, magma mixing and crustal contamination in magma chambers and melt crystallization.Compared with other rocks, (ultra)mafic rocks have lower REE content but higher PGE content, so PGE have advantages in studying the petrogeneses and evolution of them. In this study, we selected (ultra)mafic rocks collected in Dabie Orogen and volcanic rocks from Fuxin Region. Based on the distribution and behaviour of platinum-group elements, combined with other elements, we speculate the magma evolution and source mantle of these (ultra)mafic rocks and volcanic rocks.Many (ultra)mafic rocks are widely distributed in Dabie Region. According to their deformation and metamorphism, we classed them into three types. One is intrusive (ultra)mafic rocks, which are generally undeformed and show no or little sign of metamorphism, such as (ultra)mafic intrusions in Shacun, zhujiapu, Banzhufan, qingshan, Xiaohekou, Jiaoziyan, Renjiawan and Daoshichong. The other one is ultrahigh pressure metamorphic (ultra)mafic rocks, some of them appeared as eelogites, such as complex in Bixiling and adjacent Maowu. Another one is intense deformed and metamorphic, termed as tectonic slice, alpine-type (ultra)mafic rocks. The most representative is Raobazhai and Dahuapin. However, there are many controversies about the formation of those (ultra)mafic rocks. Here, we select typical rocks of the three types. The PGE were determined by inductively coupled plasma mass spectrometry (ICP-MS) ater NiS fire-assay and tellurium co-precipitation.The PGE tracing shows that three components are needed in the source of the cretaceous (uitra)mafic intrusions. They could be old enriched sub-continental lithospheric mantle, lower crust and depleted asthenospheric mantle. The pattern of PGE also shows the primitive magma of these intrusions underwent S saturation. According to palladium, we can conclude that the mantle enrich in PGE. Distribution of PGE in Bixiiing and Maowu (ultra)mafic rocks display they are products of magmas fractional crystallization. The (ultra)mafic rocks in Bixiiing and Maowu are controlled by various magmatic processes and the source mantle is depleted in PGE. Of interest is that the mantle produced UHP (ultra)mafic rocks are PGE-depleted, whereas the mantle of cretaceous (ultra)mafic intrusions are enrich in PGE. This couldindicate that the mantle change from PGE-enriched to PGE-depleted during120-OOMa, which in accord with the time of tectonic system change in the East China. At the same time, (ultra)mafic intrusions in cretaceous took information of deep mantle, which means the processes in deep mantle arose structural movement in the crust The character of PGE in alpine-type (ultra)mafic rocks declared that the rocks had experienced two types of metasomatic processes - hydrous melt derived from slab and silicate melt. In addition, we analyze the platinum-group elements in volcanic rocks on the northern margin of the North China Craton, Fuxin. The volcanic rocks characterized by negative anomalies of platinum. This indicates that platinum alloys, which may host some Pt resided in the mantle. The PGE patterns also show that Jianguo alkali basalts derived from asthenospheric mantle source, but wulahada high-Mg andesites derived from lithospheric mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the relations between the Machangqing rockbody which corresponds to the A-type granites and porphyry copper mineralization in terms of petrochemistry, trace element geochemistry, fluid inclusion geochemistry and isotope geochemistry. The results show that the Machangqing porphyry copper deposit was formed from the fluid predominated by mag-matic fluid. This kind of ore-forming fluid was just differentiated from the magma responsible for the A-type granites. therefore,as viewed from whereer they contain water or not,the A-type granites can,at least,be divided into two types: water-bearing and water-free.The water-bearing A-type granites can serve as the host ofporphyry copper deposits under certain geological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Edinburgh Festival Fringe (The Fringe) is the largest arts festival in the world and it has inspired the creation of similar festivals world-wide. Since its conception in 1947, the Fringe has demonstrated significant growth in visitor numbers; ticket sales; and its economic contribution. Despite this, the sustainable future of Edinburgh’s festivals is debated as Edinburgh, ‘the Festival City’, faces threats from other festival destinations. Festivals position Edinburgh creatively in contrast to the city’s traditionally perceived image as a cultural-historic centre. Despite this, little research has been undertaken into the creative and cultural significance of Edinburgh’s festivals, including the Fringe. This interdisciplinary research grounded in marketing, tourism, and festival and event management; and underpinned by constructivism, presents an understanding of types of brand relationships that exist between the Fringe and its primary stakeholders. This is achieved through defining both the Fringe brand image and its primary stakeholders; and applying these definitions to the development of a typology of Fringe-stakeholders’ brand relationships. The significance of this study is evident within its topic of inquiry and the research methods applied. In the little-considered arena of arts festivals and their stakeholders, this is the first in-depth study into the Fringe as a festival and festival brand. Within this, the definition of a Fringe brand image contributes to understanding the cultural and creative significance of the Fringe. Furthermore, this research contributes a unique understanding of the types of stakeholders that are engaged with the Fringe. The types of brand relationships that exist between these stakeholders and the Fringe are another significant contribution to knowledge and understanding. While specific to the present context, these findings may prove transferable to further festivals or events, and related areas and industries. The contribution made by this research to the methodological developments in festival and event studies is of additional significance. The application of visual research methods, including semiotic analysis and photo-elicitation within phenomenological interviews, has previously been applied in marketing, consumer, and tourism research, but not to the understanding of festival brands and stakeholders’ brand relationship types. Findings of this research illustrate that existing marketing and consumer brand frameworks and stakeholder theories are applicable to festivals. Further, it is possible to define ‘a’ Fringe brand image which is subjective and contradictory. The unique open-access and organic, operational model of the Fringe facilitates its many contributors, and consumers. Fringe stakeholders may be categorised according to their level of engagement with the Fringe (as primary or secondary) and their particular stakeholder role(s), which are varied and multiple. Fringe-stakeholder brand relationship types are overwhelmingly positive; and are based upon interpersonal relationship dimensions (including friendships, marriages, kinships and partnerships). Fringe-stakeholder brand relationship types can be classified therefore as having similar dimensions to those brand relationship types previously described for consumer products and brands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H. Strange, W. He, E. Denton and R. Zwiggelaar, 'Cancer Risk Assessment Related to Anatomical Tissue Types', Proceedings of the Twelfth Annual Conference on Medical Image Understanding and Analysis, 2008, p.138. Sponsorship: EPSRC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Van den Berg, A. W. C., Flikkema, E., Lems, S., Bromley, S. T., Jansen, J. C. (2006). Molecular dynamics-based approach to study the anisotropic self-diffusion of molecules in porous materials with multiple cage types: Application to H-2 in losod. Journal of physical chemistry b, 110 (1), 501-506. RAE2008