676 resultados para Macroinvertebrate communities
Resumo:
The main goal of the research described in this report was to evaluate countermeasures that agencies can use to reduce speeds as drivers enter rural communities located on high-speed roadways. The objectives of this study were as follows: * Identify and summarize countermeasures used to manage speeds in transition zones * Demonstrate the effectiveness of countermeasures that are practical for high- to low-speed transition zones * Acquire additional information about countermeasures that may show promise but lack sufficient evidence of effectiveness * Develop an application toolbox to assist small communities in selecting appropriate transition zones and effective countermeasures for entrances to small rural communities The team solicited small communities that were interested in participating in the Phase II study and several communities were also recommended. The treatments evaluated were selected by carefully considering traffic-calming treatments that have been used effectively in other countries for small rural communities, as well as the information gained from the first phase of the project. The treatments evaluated are as follows: * Transverse speed bars * Colored entrance treatment * Temporary island * Radar-activated speed limit sign * Speed feedback sign The toolbox publication and four focused tech briefs also cover the results of this work.
Resumo:
Most structure-building organisms in rocky benthic communities are surface-dependent because their energy inputs depend mainly on the surface they expose to water. Two photosynthetic strategies, divided into calcareous and non calcareous algae, strict suspension-feeders and photosynthetic suspension feeders (e.g. hermatypic corals) are the four main strategies evolutively acquired by benthic organisms. Competition between those strategies occur in relation to productivity of the different species, in such a way that, for given environmental conditions, species with a higher growth (P/B ratio) would dominate. At a worldwide scale, littoral marine benthos can he considered to fit into the four fields defined by two main axes: the first, relates to productivity and relies atrophic and oligotrophic waters and the second is defined by the degree of environmental variability or seasonality (from high to low). Coral reefs (marine ecosystems dominated by photosynthetic suspension feeders) develop in the space of oligotrophic areas with low variability, while kelp beds (marine ecosystem dominated by large, non calcareous algae) are to be found only in eutrophic places with a high variability. The space of eutrophic waters with a low variability do not has specially adapted, high structured, benthic marine ecosystems, and in these conditions opportunistic algae and animals predominate. Finally, photophilic mediterranean benthos -devoid of kelps and without hermatypic corals- typifies the field of oligotrophic areas with high variability; in its more genuine aspect, Mediterranean benthos is represented by small algae with a high percentage of calcareous thallii. In all cases strict suspension-feeders compete successfully with photosynthetic organisms only in situations of low irradiances or very high inputs of POM. In its turn, Mediterranean rocky benthos, in spite of its relative uniformity, is geographically organized along the same axes. The Gulf of Lions and the insular bottoms (Balearic Islands, for example) would correspond to the extremes of eutrophic-high variability areas and oligotrophic-low variability areas, respectively. Irradiance, nutrient and POM concentration, and hydrodynamism are the three variables which mainly affect the distribution of the different surface-dependent strategies, and thus, these parameters are of paramount interest for understanding the trophic structure of Mediterranean benthic communities. In environments non limited by light, nutrient availability, defined as the product between nutrient -POM concentration and hydrodynamism, states the dominance of calcareous versus non calcareous algae. Calcareous algae dominate in oligotrophic waters while non-calcareous algae dominate in moderately eutrophic waters. In light-limited environments, passive suspension feeders (octocorallaria, gorgonians) become dominant species if POM availability is enhanced by a high hydrodynamism (strong currents); in waters with a low charge of POM organisms of other groups, mainly active suspension feeders, predominate (sponges, bryozoans, scleractiniarians). In any case, there always exists a very variable bathymetric zone, depending on light attenuation and nutrient-POM availability, where encrusting calcareous algae strongly compete with suspension feeders (coralligenous).
Resumo:
Leaf litter inputs and retention play an important role in ecosystem functioning in forested streams. We examined colonization of leaves by microbes (bacteria, fungi, and protozoa) and fauna in Fuirosos, an intermittent forested Mediterranean stream. Black poplar (Populus nigra) and plane (Platanus acerifolia) leaf packs were placed in the stream for 4 mo. We measured the biomasses and calculated the densities of bacteria, fungi, protozoa, meiofauna, and macroinvertebrates to determine their dynamics and potential interactions throughout the colonization process. Colonization was strongly correlated with hydrological variability (defined mainly by water temperature and discharge). The 1st week of colonization was characterized by hydrological stability and warm water temperatures, and allocation of C from microbial to invertebrate compartments on the leaf packs was rapid. Clumps of fine particulate organic matter (FPOM) were retained by the leaf packs, and enhanced rapid colonization by microfauna and meiofaunal collector-gatherers (ostracods and copepods). After 2 wk, an autumnal flood caused a 20-fold increase in water flow. Higher discharge and lower water temperature caused FPOM-related fauna to drift away from the packs and modified the subsequent colonization sequence. Fungi showed the highest biomass, with similar values to those recorded at the beginning of the experiment. After 70 d of postflood colonization, fungi decreased to nearly 40% of the total C in the leaf packs, whereas invertebrates became more abundant and accounted for 60% of the C. Natural flood occurrence in Mediterranean streams could be a key factor in the colonization and processing of organic matter.
Resumo:
Abstract. The ability of 2 Rapid Bioassessment Protocols (RBPs) to assess stream water quality was compared in 2 Mediterranean-climate regions. The most commonly used RBPs in South Africa (SAprotocol) and the Iberian Peninsula (IB-protocol) are both multihabitat, field-based methods that use macroinvertebrates. Both methods use preassigned sensitivity weightings to calculate metrics and biotic indices. The SA- and IB-protocols differ with respect to sampling equipment (mesh size: 1000 lm vs 250 300 lm, respectively), segregation of habitats (substrate vs flow-type), and sampling and sorting procedures (variable time and intensity). Sampling was undertaken at 6 sites in South Africa and 5 sites in the Iberian Peninsula. Forty-four and 51 macroinvertebrate families were recorded in South Africa and the Iberian Peninsula, respectively; 77.3% of South African families and 74.5% of Iberian Peninsula families were found using both protocols. Estimates of community similarity compared between the 2 protocols were .60% similar among sites in South Africa and .54% similar among sites in the Iberian Peninsula (BrayCurtis similarity), and no significant differences were found between protocols (Multiresponse Permutation Procedure). Ordination based on Non-metric Multidimensional Scaling grouped macroinvertebrate samples on the basis of site rather than protocol. Biotic indices generated with the 2 protocols at each site did not differ. Thus, both RBPs produced equivalent results, and both were able to distinguish between biotic communities (mountain streams vs foothills) and detect water-quality impairment, regardless of differences in sampling equipment, segregation of habitats, and sampling and sorting procedures. Our results indicate that sampling a single habitat may be sufficient for assessing water quality, but a multihabitat approach to sampling is recommended where intrinsic variability of macroinvertebrate assemblages is high (e.g., in undisturbed sites in regions with Mediterranean climates). The RBP of choice should depend on whether the objective is routine biomonitoring of water quality or autecological or faunistic studies.
Resumo:
The first part of a general survey of the vegetation of Catalonia andAndorra, this paper reports all the phytocoenological associations and subassociations recorded in this area. For each community, we provide the correct name and usual synonyms, its typification (where appropriate), all the references including relevés, and the most outstanding features of its structure, species composition, ecology, distribution and diversity. Moreover, associations and subassociations are ordered appropriately in a syntaxonomic scheme. Syntaxonomic ranks are considered in a fairly broad, conservative sense. This classification established 101 associations, which correspond to the classes Lemnetea, Zosteretea, Potametea, Littorelletea, Montio-Cardaminetea, Phragmiti-Magnocaricetea, Scheuchzerio-Caricetea, Isoeto-Nanojuncetea and Molinio-Arrhenatheretea.
Resumo:
[eng] Proceedings for the 2nd annual conference: Rethinking Educational Ethnography - Researching on-line communities and interactions. University of Barcelona, 7-8 June 2012.
Resumo:
Question: How do clonal traits of a locally dominant grass (Elymus repens (L.) Gould.) respond to soil heterogeneity and shape spatial patterns of its tillers? How do tiller spatial patterns constrain seedling recruitment within the community?Locations: Artificial banks of the River Rhone, France.Material and Methods: We examined 45 vegetation patches dominated by Elymus repens. During a first phase we tested relationships between soil variables and three clonal traits (spacer length, number of clumping tillers and branching rate), and between the same clonal traits and spatial patterns (i.e. density and degree of spatial aggregation) of tillers at a very fine scale. During a second phase, we performed a sowing experiment to investigate effects of density and spatial patterns of E. repens on recruitment of eight species selected from the regional species pool.Results: Clonal traits had clear effects - especially spacer length - on densification and aggregation of E. repens tillers and, at the same time, a clear response of these same clonal traits as soil granulometry changed. The density and degree of aggregation of E. repens tillers was positively correlated to total seedling cover and diversity at the finest spatial scales.Conclusions: Spatial patterning of a dominant perennial grass responds to soil heterogeneity through modifications of its clonal morphology as a trade-off between phalanx and guerrilla forms. In turn, spatial patterns have strong effects on abundance and diversity of seedlings. Spatial patterns of tillers most probably led to formation of endogenous gaps in which the recruitment of new plant individuals was enhanced. Interestingly, we also observed more idiosyncratic effects of tiller spatial patterns on seedling cover and diversity when focusing on different growth forms of the sown species.
Resumo:
Cuscuta spp. are holoparasitic plants that can simultaneously parasitise several host plants. It has been suggested that Cuscuta has evolved a foraging strategy based on a positive relationship between preuptake investment and subsequent reward on different host species. Here we establish reliable parasite size measures and show that parasitism on individuals of different host species alters the biomass of C. campestris but that within host species size and age also contributes to the heterogeneous resource landscape. We then performed two additional experiments to test whether C. campestris achieves greater resource acquisition by parasitising two host species rather than one and whether C. campestris forages in communities of hosts offering different rewards (a choice experiment). There was no evidence in either experiment for direct benefits of a mixed host diet. Cuscuta campestris foraged by parasitising the most rewarding hosts the fastest and then investing the most on them. We conclude that our data present strong evidence for foraging in the parasitic plant C. campestris.
Resumo:
Background: Bumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change. Method: We sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient. Results: We found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides. Conclusions: Here, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.
Resumo:
Many rural communities have developed around highways or major county roads; as a result, the main street through small rural communities is often part of a high-speed rural highway. Highways and county roads are characterized by high speeds outside the city limits; they then transition into a reduced speed section through the rural community. Consequently, drivers passing through the community often enter at high speeds and maintain those speeds as they travel through the community. Traffic calming in small rural communities along major roadways is common in Europe, but the U.S. does not have experience with applying traffic-calming measures outside of major urban areas. The purpose of the project was to evaluate traffic-calming treatments on the major road through small Iowa communities using either single-measure low-cost or gateway treatments. The project was partially funded by the Iowa Highway Research Board (IHRB). The focus of the IHRB portion was to evaluate single-measure, low-cost, traffic-calming measures that are appropriate to major roads through small rural communities. Seven different low-cost traffic treatments were implemented and evaluated in five rural Iowa communities. The research evaluated the use of two gateway treatments in Union and Roland; five single-measure treatments (speed table, on-pavement “SLOW” markings, a driver speed feedback sign, tubular markers, and on-pavement entrance treatments) were evaluated in Gilbert, Slater, and Dexter.
Resumo:
Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed.
Resumo:
Appendix: List of species found in boundaries
Resumo:
[eng] Proceedings for the 2nd annual conference: Rethinking Educational Ethnography - Researching on-line communities and interactions. University of Barcelona, 7-8 June 2012.
Resumo:
[eng] Proceedings for the 2nd annual conference: Rethinking Educational Ethnography - Researching on-line communities and interactions. University of Barcelona, 7-8 June 2012.