908 resultados para Macadamia nut -- Genetics.
Resumo:
Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.
Resumo:
Lake sturgeon Acipenser fulvescens restoration is a priority throughout the Great Lakes basin, where sturgeon have been reduced to less than 1% of historic levels due to habitat degradation, overharvest, and fragmentation of spawning populations. The population parameters most important to long-term lake sturgeon persistence are unknown.
Resumo:
This workshop was held at the National Bureau of Fish Genetic Resources and followed on from the Indian mackerel Working group meeting in Colombo (28-29 May, 2012). Activities included; DNA extraction; PCR (Polymerase Chain Reaction) for microsatellites; genotyping microsatellites; data analysis; emerging technologies; and an action plan
Resumo:
The objective of this study was to develop type I markers for genome mapping and other genetic studies of Penaeus monodon. Primers were designed based on expressed sequence tags (ESTs) from a P monodon cephalothorax cDNA library to amplify 100-300 bp products. 34 of the primer pairs successfully amplified PCR products from genomic DNA. Single-strand conformation polymorphism analysis showed that similar to 30% of the ESTs tested exhibit polymorphism in a test panel of P monodon individuals. Mendelian inheritance of the EST-derived markers has been established in two international reference mapping families of P monodon, and mapping of these markers is in progress. Some ESTs were successfully amplified from other Penaeus species (P. chinensis, P japonicus and P vannamei), indicating that the markers are applicable in cross-species comparison. Two populations of P. japonicus could be differentiated using one of the ESTS. In conclusion, the polymorphic EST markers developed in this study are applicable in genome mapping and population genetic studies of penaeid shrimp. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
As the only remainder type of phycobiliproteins in Prochlorococcus, the actual role of phycoerythrin still remains unknown. Previous studies revealed that two different forms of phycoerythrin gene were found in two ecotypes of Prochlorococcus that are specifically adapted to either high light (HL) or low light (LL) conditions. Here we analyze patterns of phycoerythrin nucleotide variation in the HL- and LL-Prochlorococcus populations. Our analyses reveal a significantly greater number of non-synonymous fixed substitutions in peB and peA than expected based on interspecific comparisons. This pattern of excess non-synonymous fixed substitutions is not seen in other five phycoerythrin-related genes (peZ/V/Y/T/S). Several neutrality statistical tests indicate an excess of rare frequency polymorphisms in the LL-Prochlorococcus data, but an excess of intermediate frequency polymorphisms in the HL-Prochlorococcus data. Distributions of the positively selected sites identified using the likelihood ratio test, when mapped onto the phycoerythrin tertiary structure, reveal that HL- and LL-phycoerythrin should be under different selective patterns. These findings may provide insights into the likely role of selection at the phycoerythrin locus and motivate further research to unveil the function of phycoerythrin in Prochlorococcus.
Resumo:
Crassostrea ariakensis is an important aquacultured oyster species in Asia, its native region. During the past decade, consideration was given to introducing C. ariakensis into Chesapeake Bay, in the United States, to help revive the declining native oyster industry and bolster the local ecosystem. Little is known about the ecology and biology of this species in Asia due to confusion with nomenclature and difficulty in accurately identifying the species of wild populations in their natural environment. Even less research has been done on the population genetics of native populations of C. ariakensis in Asia. We examined the magnitude and pattern of genetic differentiation among 10 wild populations of C. ariakensis from its confirmed distribution range using eight polymorphic microsatellite markers. Results showed a small but significant global theta (ST) (0.018), indicating genetic heterogeneity among populations. Eight genetically distinct populations were further distinguished based on population pairwise theta (ST) comparisons, including one in Japan, four in China, and three populations along the coast of South Korea. A significant positive association was detected between genetic and geographic distances among populations, suggesting a genetic pattern of isolation by distance. This research represents a novel observation on wild genetic population structuring in a coastal bivalve species along the coast of the northwest Pacific.
Resumo:
Sprouty proteins are key regulators of cell growth and branching morphogenesis during development. Human SPRY3 which maps to the pseudoautosomal region 2, undergoes random X-inactivation in females and preferential Y-inactivation in males, behaving as though genetically X-linked. Spry3 is widely expressed in neuronal tissues, being found at high levels in the cerebellum and particularly in the Purkinje cells which, notably, are deficient in the autistic brain. Spry3 is also highly expressed in other ganglia in adults including retinal ganglion cells, dorsal root ganglion and superior cervical ganglion. SPRY3 enhancer can drive SPRY3 expression in the lung airway, which is consistent with a role in branching morphogenesis and the function of the original Drosophila Spry gene, which is critical for lung morphogenesis, providing a possible explanation for an observed anatomic abnormality in the autistic lung airway. In the human and mouse, the SPRY3 core promoter contains an AG-rich repeat and we found evidence of coexpression, promoter binding and regulation of SPRY3 expression by transcription factors EGR1, ZNF263 and PAX6. Spry3 over-expression in mouse superior cervical ganglion cells inhibits axon branching and Spry3 knockdown in those cells increases axon branching, consistent with known functions of other Sprouty proteins. Novel SPRY3 upstream transcripts that I characterised originate from three start sites in the X-linked F8A3 – TMLHE gene region, which is recently implicated in autism causation. Arising from these findings, I propose that the lung airway abnormality and low levels of blood carnitine found in autism suggest that deregulation of SPRY3 may underpin a subset of autism cases.
Resumo:
This is a crucial transition time for human genetics in general, and for HIV host genetics in particular. After years of equivocal results from candidate gene analyses, several genome-wide association studies have been published that looked at plasma viral load or disease progression. Results from other studies that used various large-scale approaches (siRNA screens, transcriptome or proteome analysis, comparative genomics) have also shed new light on retroviral pathogenesis. However, most of the inter-individual variability in response to HIV-1 infection remains to be explained: genome resequencing and systems biology approaches are now required to progress toward a better understanding of the complex interactions between HIV-1 and its human host.
Resumo:
During ecological speciation, divergent natural selection drives evolution of ecological specialization and genetic differentiation of populations on alternate environments. Populations diverging onto the same alternate environments may be geographically widespread, so that divergence may occur at an array of locations simultaneously. Spatial variation in the process of divergence may produce a pattern of differences in divergence among locations called the Geographic Mosaic of Divergence. Diverging populations may vary in their degree of genetic differentiation and ecological specialization among locations. My dissertation examines the pattern and evolutionary processes of divergence in pea aphids (Acyrthosiphon pisum) on alfalfa (Medicago sativa) and clover (Trifolium pretense). In Chapter One, I examined differences among North American aphid populations in genetic differentiation at nuclear, sequence-based markers and in ecological specialization, measured as aphid fecundity on each host plant. In the East, aphids showed high host-plant associated ecological specialization and high genetic differentiation. In the West, aphids from clover were genetically indistinguishable from aphids on alfalfa, and aphids from clover were less specialized. Thus, the pattern of divergence differed among locations, suggesting a Geographic Mosaic of Divergence. In Chapter Two, I examined genomic heterogeneity in divergence in aphids on alfalfa and clover across North America using amplified fragment length polymorphisms (AFLPs). The degree of genetic differentiation varied greatly among markers, suggesting that divergent natural selection drives aphid divergence in all geographic locations. Three of the same genetic markers were identified as evolving under divergent selection in the eastern and western regions, and additional divergent markers were identified in the East. In Chapter Three, I investigated population structure of aphids in North America, France, and Sweden using AFLPs. Aphids on the same host plant were genetically similar across many parts of their range, so the evolution of host plant specialization does not appear to have occurred independently in every location. While aphids on alfalfa and clover were genetically differentiated in most locations, aphids from alfalfa and clover were genetically similar in both western North America and Sweden. High gene flow from alfalfa onto clover may constrain divergence in these locations.
Resumo:
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.