986 resultados para MUTANT MICE
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
International audience
Resumo:
Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^
Resumo:
Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These animals display clinical and pathological features closely resembling human ALS. Early changes observed in these animals were intra-axonal and dendritic vacuoles due to dilatation of the endoplasmic reticulum and vacuolar degeneration of mitochondria. We have reported that the Golgi apparatus of spinal cord motor neurons in patients with sporadic ALS is fragmented and atrophic. In this study we show that spinal cord motor neurons of transgenic mice for an SOD1 mutation display a lesion of the Golgi apparatus identical to that found in humans with sporadic ALS. In these mice, the stacks of the cisternae of the fragmented Golgi apparatus are shorter than in the normal organelle, and there is a reduction in Golgi-associated vesicles and adjacent cisternae of the rough endoplasmic reticulum. Furthermore, the fragmentation of the Golgi apparatus occurs in an early, presymptomatic stage and usually precedes the development of the vacuolar changes. Transgenic mice overexpressing the wild-type human superoxide dismutase are normal. In familial ALS, an early lesion of the Golgi apparatus of motor neurons may have adverse functional effects, because newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.
Resumo:
Mutations in the human Cu,Zn superoxide dismutase gene (SOD1) are found in 20% of kindreds with familial amyotrophic lateral sclerosis. Transgenic mice (line G1H) expressing a human SOD1 containing a mutation of Gly-93 --> Ala (G93A) develop a motor neuron disease similar to familial amyotrophic lateral sclerosis, but transgenic mice (line N1029) expressing a wild-type human SOD1 transgene do not. Because neurofilament (NF)-rich inclusions in spinal motor neurons are characteristic of amyotrophic lateral sclerosis, we asked whether mutant G1H and/or N1029 mice develop similar NF lesions. NF inclusions (i.e., spheroids, Lewy body-like inclusions) were first detected in spinal cord motor neurons of the G1H mice at 82 days of age about the time these mice first showed clinical evidence of disease. Other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulated in these spheroids. The onset of accumulations of ubiquitin immunoreactivity in the G1H mice paralleled the emergence of vacuoles and NF-rich spheroids in neurons, but they did not colocalize exclusively with spheroids. In contrast, NF inclusions were not seen in the N1029 mice until they were 132 days old, and ubiquitin immunoreactivity was not increased in the N1029 mice even at 199 days of age. Astrocytosis in spinal cord was associated with a marked increase in glial fibrillary acidic protein immunoreactivity in the G1H mice, but not in the N1029 mice. Finally, comparative studies revealed a striking similarity between the cytoskeletal pathology in the G1H transgenic mice and in patients with amyotrophic lateral sclerosis. These findings link a specific SOD1 mutation with alterations in the neuronal cytoskeleton of patients with amyotrophic lateral sclerosis. Thus, neuronal cytoskeletal abnormalities may be implicated in the pathogenesis of human familial amyotrophic lateral sclerosis.
Resumo:
Peer reviewed
Resumo:
Mutations of K-ras have been found in 30-60% of colorectal carcinomas and are believed to be associated with tumor initiation, tumor progression and metastasis formation. Therefore, silencing of mutant K-ras expression has become an attractive therapeutic strategy for colorectal cancer treatment. The aim of our study was to investigate the effect of microRNA (miRNA) molecules directed against K-ras (miRNA-K-ras) on K-ras expression level and the growth of colorectal carcinoma cell line LoVo in vitro and in vivo. In addition, we evaluated electroporation as a gene delivery method for transfection of LoVo cells and tumors with plasmid DNA encoding miRNA-K-ras (pmiRNA-K-ras). Results of our study indicated that miRNAs targeting K-ras efficiently reduced K-ras expression and cell survival after in vitro electrotransfection of LoVo cells with pmiRNA-K-ras. In vivo, electroporation has proven to be a simple and efficient delivery method for local administration of pmiRNA-K-ras molecules into LoVo tumors. This therapy shows pronounced antitumor effectiveness and has no side effects. The obtained results demonstrate that electrogene therapy with miRNA-K-ras molecules can be potential therapeutic strategy for treatment of colorectal cancers harboring K-ras mutations. © 2010 Nature Publishing Group All rights reserved.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B−/−) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B−/− mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B−/− mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders
Resumo:
Recombinant AAV-8 vectors have shown significant promise for hepatic gene therapy of hemophilia B. However, the theme of AAV vector dose dependent immunotoxicity seen with AAV2 vectors earlier seem to re-emerge with AAV8 vectors as well. It is therefore important to develop novel AAV8 vectors that provide enhanced gene expression at significantly less vector doses. We hypothesized that AAV8 during its intracellular trafficking, are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of specific serine/threonine kinase or ubiquitination targets on AAV8 capsid (Fig.1A) may improve its transduction efficiency. To test this, point mutations at specific serine (S)/threonine (T) > alanine (A) or lysine (K)>arginine (R) residues were generated on AAV8 capsid. scAAV8-EGFP vectors containing the wild-type (WT) and each one of the 5 S/T/K-mutant(S276A, S501A, S671A, T251A and K137R) capsids were evaluated for their liver transduction efficiency at a dose of 5 X 1010 vgs/ animal in C57BL/6 mice in vivo. The best performing mutant was found to be the K137R vector in terms of either the gene expression (46-fold) or the vector copy numbers in the hepatocytes (22-fold) compared to WT-AAV8 (Fig.1B). The K137R-AAV8 vector that showed significantly decreased ubiquitination of the viral capsid had reduced activation of markers of innate immune response [IL-6, IL-12, tumor necrosis factor α, Kupffer cells and TLR-9]. In addition, animals injected with the K137R mutant also demonstrated decreased (2-fold) levels of cross-neutralizing antibodies when compared to animals that received the WT-AAV8 vector. To study further the utility of the novel AAV8-K137R mutant in a therapeutic setting, we delivered human coagulation factor IX (h.FIX) under the control of liver specific promoters (LP1 or hAAT) at two different doses (2.5x10^10 and 1x10^11 vgs per mouse) in 8-12 weeks old male C57BL/6 mice. As can be seen in Fig.1C/D, the circulating levels of h.FIX were higher in all the K137R-AAV8 treated groups as compared to the WT-AAV8 treated groups either at 2 weeks (62% vs 37% for hAAT constructs and 47% vs 21% for LP1 constructs) or 4 weeks (78% vs 56% for hAAT constructs and 64% vs 30% for LP1 constructs) post hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel vector for potential gene therapy of hemophilia B.
Resumo:
Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders.
Resumo:
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.
Resumo:
Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition.
Resumo:
INTRODUCTION: Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). METHODS: A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. RESULTS: Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. CONCLUSIONS: These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors.