876 resultados para MITOCHONDRIAL PHYLOGEOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shrews of the genus Sorex are characterized by a Holarctic distribution, and relationships among extant taxa have never been fully resolved. Phylogenies have been proposed based on morphological, karyological, and biochemical comparisons, but these analyses often produced controversial and contradictory results. Phylogenetic analyses of partial mitochondrial cytochrome b gene sequences (1011 bp) were used to examine the relationships among 27 Sorex species. The molecular data suggest that Sorex comprises two major monophyletic lineages, one restricted mostly to the New World and one with a primarily Palearctic distribution. Furthermore, several sister-species relationships are revealed by the analysis. Based on the split between the Soricinae and Crocidurinae subfamilies, we used a 95% confidence interval for both the calibration of a molecular clock and the subsequent calculation of major diversification events within the genus Sorex. Our analysis does not support an unambiguous acceleration of the molecular clock in shrews, the estimated rate being similar to other estimates of mammalian mitochondrial clocks. In addition, the data presented here indicate that estimates from the fossil record greatly underestimate divergence dates among Sorex taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urine samples from 20 male volunteers of European Caucasian origin were stored at 4 degrees C over a 4-month period in order to compare the identification potential of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) markers. The amount of nDNA recovered from urines dramatically declined over time. Consequently, nDNA likelihood ratios (LRs) greater than 1,000 were obtained for 100, 70 and 55% of the urines analysed after 6, 60 and 120 days, respectively. For the mtDNA, HVI and HVII sequences were obtained for all samples tested, whatever the period considered. Nevertheless, the highest mtDNA LR of 435 was relatively low compared to its nDNA equivalent. Indeed, LRs obtained with only three nDNA loci could easily exceed this value and are quite easier to obtain. Overall, the joint use of nDNA and mtDNA markers enabled the 20 urine samples to be identified, even after the 4-month period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A selection gradient was recently suggested as one possible cause for a clinal distribution of mitochondrial DNA (mtDNA) haplotypes along an altitudinal transect in the greater white-toothed shrew, Crocidura russula (Ehinger et al. 2002). One mtDNA haplotype (H1) rare in lowland, became widespread when approaching the altitudinal margin of the distribution. As H1 differs from the main lowland haplotype by several nonsynonymous mutations (including on ATP6), and as mitochondria play a crucial role in metabolism and thermogenesis, distribution patterns might stem from differences in the thermogenic capacity of different mtDNA haplotypes. In order to test this hypothesis, we measured the nonshivering thermogenesis (NST) associated with different mtDNA haplotypes. Sixty-two shrews, half of which had the H1 haplotype, were acclimated in November at semioutdoor conditions and measured for NST throughout winter. Our results showed the crucial role of NST for winter survival in C. russula. The individuals that survived winter displayed a higher significant increase in NST during acclimation, associated with a significant gain in body mass, presumably from brown fat accumulation. The NST capacity (ratio of NST to basal metabolic rate) was exceptionally high for such a small species. NST was significantly affected by a gender x haplotype interaction after winter-acclimation: females bearing the H1 haplotype displayed a better thermogenesis at the onset of the breeding season, while the reverse was true for males. Altogether, our results suggest a sexually antagonistic cyto-nuclear selection on thermogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome--a subset of the metabolome--and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPR(mt)). UPR(mt) shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Les changements climatiques du Quaternaire ont eu une influence majeure sur la distribution et l'évolution des biota septentrionaux. Les Alpes offrent un cadre spatio-temporel bien étudié pour comprendre la réactivité de la flore et le potentiel d'adaptation d'une espèce végétale face aux changements climatiques. Certaines hypothèses postulent une diversification des espèces en raison de la disparition complète de la flore des Alpes et d'un isolement important des espèces dans des refuges méridionaux durant les dernières glaciations (Tabula Rasa). Une autre hypothèse stipule le maintien de poches de résistance pour la végétation au coeur des Alpes (Nunataks). Comme de nombreuses espèces végétales présentant un grand succès écologique semblent avoir réagi aux glaciations par la multiplication de leur génome (autopolyploïdie), leur étude en milieu naturel devrait permettre de comprendre les avantages inhérents à la polyploïdie. Biscutella laevigata est un modèle emblématique de biogéographie historique, diverses études ayant montré que des populations diploïdes sont actuellement isolées dans les zones restées déglacées durant le dernier maximum glaciaire, alors que des tétraploïdes ont recolonisé l'ensemble des zones alpines mises à nu par le retrait des glaciers. Si le contexte périglaciaire semble avoir favorisé ce jeune complexe autopolyploïde, les circonstances et les avantages de cette mutation génomique ne sont pas encore clairs. Y a-t-il eu de multiples événements de polyploïdisation ? Dans quelle mesure affecte(nt)il(s) la diversité génétique et le potentiel évolutif des polyploïdes ? Les polyploïdes ont-ils une grande flexibilité génomique, favorisant une radiation adaptative, ou doivent-ils leur succès à une grande plasticité écologique ? Cette étude aborde ces questions à différentes échelles spatiales et temporelles. L'échelle régionale des Alpes occidentales permet d'aborder les facteurs distaux (aspects historiques), alors que l'échelle locale cherche à appréhender les facteurs proximaux (mécanismes évolutifs). Dans les Alpes occidentales, des populations ont été densément échantillonnées et étudiées grâce à (1) leur cytotype, (2) leur appartenance taxonomique, (3) leur habitat et (4) des marqueurs moléculaires de l'ADN chloroplastique, en vue d'établir leurs affinités évolutives. Á l'échelle locale, deux systèmes de population ont été étudiés : l'un où les populations persistent en périphérie de l'aire de distribution et l'autre au niveau du front actif de colonisation, en marge altitudinale. Les résultats à l'échelle des Alpes occidentales révèlent les sites d'intérêt (refuges glaciaires, principales barrières et voies de recolonisation) pour une espèce représentative des pelouses alpines, ainsi que pour la biodiversité régionale. Les Préalpes ont joué un rôle important dans le maintien de populations à proximité immédiate des Alpes centrales et dans l'évolution du taxon, voire de la végétation. Il est aussi démontré que l'époque glaciaire a favorisé l'autopolyploïdie polytopique et la recolonisation des Alpes occidentales par des lignées distinctes qui s'hybrident au centre des Alpes, influençant fortement leur diversité génétique et leur potentiel évolutif. L'analyse de populations locales en situations contrastées à l'aide de marqueurs AFLP montre qu'au sein d'une lignée présentant une grande expansion, la diversité génétique est façonnée par des forces évolutives différentes selon le contexte écologique et historique. Les populations persistant présentent une dispersion des gènes restreinte, engendrant une diversité génétique assez faible, mais semblent adaptées aux conditions locales de l'environnement. À l'inverse, les populations colonisant la marge altitudinale sont influencées par les effets de fondation conjugués à une importante dispersion des gènes et, si ces processus impliquent une grande diversité génétique, ils engendrent une répartition aléatoire des génotypes dans l'environnement. Les autopolyploïdes apparaissent ainsi comme capables de persister face aux changements climatiques grâce à certaines facultés d'adaptation locale et de grandes capacités à maintenir une importante diversité génétique lors de la recolonisation post-glaciaire. Summary The extreme climate changes of the Quaternary have had a major influence on species distribution and evolution. The European Alps offer a great framework to investigate flora reactivity and the adaptive potential of species under changing climate. Some hypotheses postulate diversification due to vegetation removal and important isolation in southern refugia (Tabula Rasa), while others explain phylogeographic patterns by the survival of species in favourable Nunataks within the Alps. Since numerous species have successfully reacted to past climate changes by genome multiplication (autopolyploidy), studies of such taxa in natural conditions is likely to explain the ecological success and the advantages of autopolyploidy. Early cytogeographical surveys of Biscutella laevigata have shed light on the links between autopolyploidy and glaciations by indicating that diploids are now spatially isolated in never-glaciated areas, while autotetraploids have recolonised the zones covered by glaciers- during the last glacial maximum. A periglacial context apparently favoured this young autopolyploid complex but the circumstances and the advantages of this genomic mutation remain unclear. What is the glacial history of the B. laevigata autopolyploid complex? Are there multiple events of polyploidisation? To what extent do they affect the genetic diversity and the evolutionary potential of polyploids? Is recolonisation associated with adaptive processes? How does long-term persistence affect genetic diversity? The present study addresses these questions at different spatiotemporal scales. A regional survey at the Western Alps-scale tackles distal factors (evolutionary history), while local-scale studies explore proximal factors (evolutionary mechanisms). In the Western Alps, populations have been densely sampled and studied from the (1) cytotypic, (2) morphotaxonomic, (3) habitat point of views, as well as (4) plastid DNA molecular markers, in order to infer their relationships and establish the maternal lineages phylogeography. At the local scale, populations persisting at the rear edge and populations recolonising the attitudinal margin at the leading edge have been studied by AFLPs to show how genetic diversity is shaped by different evolutionary forces across the species range. The results at the regional scale document the glacial history of a widespread species, representative of alpine meadows, in a regional area of main interest (glacial refugia, main barriers and recolonisation routes) and points out to sites of interest for regional biodiversity. The external Alps have played a major role in the maintenance of populations near the central Alps during the Last Glacial Maximum and influenced the evolution of the species, and of vegetation. Polytopic autopolyploidy in different biogeographic districts is also demonstrated. The species has had an important and rapid radiation because recolonisation took place from different refugia. The subsequent recolonisation of the Western Alps was achieved by independent lineages that are presently admixing in the central Alps. The role of the Pennic summit line is underlined as a great barrier that was permeable only through certain favourable high-altitude passes. The central Alps are thus viewed as an important crossroad where genomes with different evolutionary histories are meeting and admixing. The AFLP analysis and comparison of local populations growing in contrasted ecological and historical situations indicate that populations persisting in the external Alps present restricted gene dispersal and low genetic diversity but seem in equilibrium with their environment. On the contrary, populations colonising the attitudinal margin are mainly influenced by founder effects together with great gene dispersal and genotypes have a nearly random distribution, suggesting that recolonisation is not associated with adaptive processes. Autopolyploids that locally persist against climate changes thus seem to present adaptive ability, while those that actively recolonise the Alps are successful because of their great capacity to maintain a high genetic diversity against founder effects during recolonisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé:Background:La mutation 3243 de 1'ADN mitochondrial est associee avec le syndrome l\/HDD (surdite, diabète transmis par la mère) et le syndrome MELAS (Myopathie, Encéphalopathie, acidose Lactique et attaques cérébrales). Elle est aussi associe à des troubles cardiaques, digestifs, endo- et exocrines. Nous rapportons deux cas de maculopathie associée à cette mutation.Histoire et symptomes: pCas l: il s'agit d'une femme de 60 ans soufrant d'un diabète et d'une surdité sans plainte visuelle lors de la présentation. Son acuité visuelle était de 10/ l0 des deux yeux.Cas 2: il s'agit d'une femme de 54 ans souffrant d'une surdité et d'un diabète qui se plaint d'une baisse de vision principalement de l'oeil gauche. Son acuité visuelle était de 6/10 pour l'oeil droit et de 0.5/l0 pour l'oeil gauche.Les deux patientes présentaient une atrophie choriorétinienne aréolaire centrale. La patiente 1 a été suivie durant plus de 15 ans. Une évolution lente et progressive de la maculopathie a été observée. Lors de la dernière visite, l'acuité visuelle était de 6/ l0 dans les deux yeux. Elle présentait un handicap marqué des suites du scotome annulaire.Thérapie et pronostic:AucunConclusion:Les deux patientes présentaient une atrophie rétinienne annulaire périmaculaire. Les patients atteints d'une mutation 3243 de l'ADN mitochondrial devraient bénéficier d'un examen du fond d'oeil à la recherche d'une maculopahtie, même s'ils sont asymptomatiques.Inversement, la découverte d'une telle maculopathie géographique devrait suggérer la possibilité d'une mutation au locus 3243 de l'ADN mitochondrial, surtout en présence d'un diabète et/ou d'une surdité.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial DNA sequences from two mitochondrial (mt) and one nuclear gene (cytochrome b, 12S rRNA, and C-mos) were used to estimate the phylogenetic relationships among the six extant species of skinks endemic to the Cape Verde Archipelago. The species form a monophyletic unit, indicating a single colonization of the islands, probably from West Africa. Mabuya vaillanti and M. delalandii are sister taxa, as indicated by morphological characters. Mabuya fogoensis and M. stangeri are closely related, but the former is probably paraphyletic. Mabuya spinalis and M. salensis are also probably paraphyletic. Within species, samples from separate islands always form monophyletic groups. Some colonization events can be hypothesized, which are in line with the age of the islands. C-mos variation is concordant with the topology derived from mtDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp) region of the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556). AMOVA analysis indicated that most of the variation (67%) occurred within populations and the F ST value (0.32996) was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550), indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A point mutation at the locus 3243 of the mitonchondrial DNA (mtDNA) is associated with either the MIDD syndrome (maternally inherited diabetes, deafness), the MELAS syndrome (myopathy, encephalitis, lactic acidosis, stroke) or cardiac, digestive, endocrine or exocrine dysfunctions. We report a peculiar maculopathy in two patients with an mtDNA 3243 mutation. HISTORY AND SIGNS: Case 1: A visually asymptomatic 40-year-old woman was examined for screening of diabetic retinopathy. Visual acuity was 10 / 10 in both eyes. Case 2: A 54-year-old woman with deafness and diabetes complained of visual loss. Visual acuity was 6 / 10 for the right eye and 0.5 / 10 for the left eye. Both patients exhibited a chorioretinal areolar atrophy. Case 1 was followed over 15 years and exhibited a slow progression of the maculopathy with moderate loss of visual acuity to 6 / 10 in both eyes, but marked handicap from the annular scotoma. THERAPY AND OUTCOME: None. CONCLUSION: Both patients presented a perimacular annular retinal atrophy. Patients harbouring mtDNA 3243 mutation should be examined for the presence of a maculopathy, even if they are asymptomatic. Conversely, the finding of such a geographic maculopathy should suggest the possibility of a point mutation at the locus 3243 of the mitochondrial DNA, especially in the presences of diabetes mellitus and/or deafness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoblastoma is the most common pediatric intraocular neoplasm. While retinoblastoma development requires the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, additional genomic changes are involved in tumor progression, which progressively lead to resistance of tumor cells to death. Therapeutics acting at very downstream levels of death signaling pathways should therefore be interesting in killing retinoblastoma cells. The BH3-only proteins promote apoptosis by modulating the interaction between the pro- and antiapoptotic members of the BCL2 protein family, and this effect can be recapitulated by the BH3 domains. This report analyzes the effect of various BH3 peptides, corresponding to different BH3-only proteins, on two retinoblastoma cell lines, Y79 and WERI-Rb, as well as on the photoreceptor cell line 661W. The BH3 peptide BIRO1, derived from the BCL2L11 death domain, was very effective in promoting Y79 and WERI-Rb cell death without affecting the 661W photoreceptor cells. This cell death was efficient even in absence of BAX and was shown to be caspase independent. While ROS production or AIF release was not detected from mitochondria of treated cells, BIRO1 initiated mitochondria fragmentation in a short period of time following treatment. IMPLICATIONS: The BIRO1 peptide is highly effective at killing retinoblastoma cells and has potential as a peptidomimetic.