236 resultados para MICROEMULSION
Resumo:
As diversas aplicações tecnológicas de nanopartículas magnéticas (NPM) vêm intensificando o interesse por materiais com propriedades magnéticas diferenciadas, como magnetização de saturação (MS) intensificada e comportamento superparamagnético. Embora MNP metálicas de Fe, Co e bimetálicas de FeCo e FePt possuam altos valores de MS, sua baixa estabilidade química dificulta aplicações em escala nanométrica. Neste trabalho foram sintetizadas NPM de Fe, Co, FeCo e FePt com alta estabilidade química e rigoroso controle morfológico. NPM de óxido metálicos (Fe e Co) também foram obtidas. Dois métodos de síntese foram empregados. Usando método baseado em sistemas nanoheterogêneos (sistemas micelares ou de microemulsão inversa), foram sintetizadas NPM de Fe3O4 e Co metálico. Foram empregados surfactantes cátion-substituídos: dodecil sulfato de ferro(III) (FeDS) e dodecil sulfato de cobalto(II) (CoDS). Para a síntese das NPM, foram estudados e determinados a concentração micelar crítica do FeDS em 1-octanol (cmc = 0,90 mmol L-1) e o diagrama de fases pseudoternário para o sistema n-heptano/CoDS/n-butanol/H2O. NPM esferoidais de magnetita com3,4 nm de diâmetro e comportamento quase-paramagnético foram obtidas usando sistemas micelares de FeDS em 1-octanol. Já as NPM de Co obtidas via microemulsão inversa, apesar da larga distribuição de tamanho e baixa MS, são quimicamente estáveis e superparamagnéticas. O segundo método é baseado na decomposição térmica de complexos metálicos, pelo qual foram preparadas NPM esféricas de FePt e de óxidos metálicos (Fe3O4, FeXO1-X, (Co,Fe)XO1-X e CoFe2O4) com morfologia controlada e estabilidade química. O método não mostrou a mesma efetividade na síntese de NPM de FeAg e FeCo: a liga FeAg não foi obtida enquanto que NPM de FeCo com estabilidade química foram obtidas sem controle morfológico. NPM de Fe e FeCo foram preparadas a partir da redução térmica de NPM de Fe3O4 e CoFe2O4, as quais foram previamente recobertas com sílica. A sílica previne a sinterização inter-partículas, além de proporcionar caráter hidrofílico e biocompatibilidade ao material. As amostras reduzidas apresentaram aumento dos valores de MS (entre 21,3 e 163,9%), o qual é diretamente proporcional às dimensões das NPM. O recobrimento com sílica foi realizado via hidrólise de tetraetilortosilicato (TEOS) em sistema de microemulsão inversa. A espessura da camada de sílica foi controlada variando-se o tempo de reação e as concentrações de TEOS e de NPM, sendo então proposto um mecanismo do processo de recobrimento. Algumas amostras receberam um recobrimento adicional de TiO2 na fase anatase, para o qual foi empregado etilenoglicol como solvente e ligante para formação de glicolato de Ti como precursor. A espessura da camada de TiO2 (2-12 nm) é controlada variando as quantidades relativas entre NPM e o precursor de Ti. Ensaios de hipertermia magnética foram realizados para as amostras recobertas com sílica. Ensaios de hipertermia magnéticas mostram grande aumento da taxa de aquecimento das amostras após a redução térmica, mesmo para dispersões diluídas de NPM (0,6 a 4,5 mg mL-1). Taxas de aquecimento entre 0,3 e 3,0oC min-1 e SAR entre 37,2 e 96,3 W g-1. foram obtidos. A atividade fotocatalítica das amostras recobertas foram próximas à da fase anatase pura, com a vantagem de possuir um núcleo magnético que permite a recuperação do catalisador pela simples aplicação de campos magnéticos externos. Os resultados preliminares dos ensaios de hipertermia magnética e fotocatálise indicam um forte potencial dos materiais aqui relatados para aplicações em biomedicina e em fotocatálise.
Resumo:
Polyethylcyanoacrylate (PECA) nanoparticles were prepared by interfacial polymerization of a water-in-oil microemulsion. Nanoparticles were isolated from the polymerization template by sequential ethanol washing and centrifugation. A nanocapsule preparation yielding the original particle size and distribution following redispersion in an aqueous solution was achieved by freeze-drying the isolated nanoparticles in a solution of 5% w/v sugar. The cytotoxicity and uptake of nanocapsules by dendritic cells was investigated using a murine-derived cell line (D1). PECA nanoparticles were found to adversely effect cell viability at concentrations greater than 10 mug/ml of polymer in the culture medium. In comparison to antigen in solution, cell uptake of antigen encapsulated within nanoparticles was significantly higher at both 4 and 37 degreesC. Following a 24 h incubation period, the percentage of cells taking-up antigen was also increased when antigen was encapsulated in nanoparticles as compared to antigen in solution. The uptake of nanoparticles and the effect of antigen formulation on morphological cell changes indicative of cell maturation were also investigated by scanning electron microscopy (SEM). SEM clearly demonstrated the adherence of nanoparticles to the cell surface. Incubation of D1 dendritic cells with nanoparticles containing antigen also resulted in morphological changes indicative of cell maturation similar to that observed when the cells were incubated with lipopolysaccharide. In contrast, cells incubated with antigen solution did not demonstrate such morphological changes and appeared similar to immature cells that had not been exposed to antigen.
Resumo:
A phase diagram of the pseudoternary system ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with butanol as a cosurfactant was prepared. Areas containing optically isotropic, low viscosity one-phase systems were identified and systems therein designated as w/o droplet-, bicontinuous- or solution-type microemulsions using conductivity, viscosity, cryo-field emission scanning electron microscopy and self-diffusion NMR. Nanoparticles were prepared by interfacial polymerization of selected w/o droplet, bicontinuous- or solution-type microemulsions with ethyl-2-cyanoacrylate. Morphology of the particles and entrapment of the water-soluble model protein ovalbumin were investigated. Addition of monomer to the different types of microemulsions (w/o droplet, bicontinuous, solution) led to the formation of nanoparticles, which were similar in size (similar to 250 nm), polydispersity index (similar to 0.13), zeta-potential (similar to-17 mV) and morphology. The entrapment of the protein within these particles was up to 95%, depending on the amount of monomer used for polymerization and the type of microemulsion used as a polymerization template. The formation of particles with similar characteristics from templates having different microstructure is surprising, particularly considering that polymerization is expected to occur at the water-oil interface by base-catalysed polymerization. Dynamics within the template (stirring, viscosity) or indeed interfacial phenomena relating to the solid-liquid interface appear to be more important for the determination of nanoparticle morphology and characteristics than the microstructure of the template system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Water-in-oil microemulsions (w/o ME) capable of undergoing a phase-transition to lamellar liquid crystals (LC) or bicontinuous ME upon aqueous dilution were formulated using Crodarnol EO, Crill 1 and Crillet 4, an alkanol or alkanediol as cosurfactant and water. The hypothesis that phase-transition of ME to LC may be induced by tears and serve to prolong precomeal retention was tested. The ocular irritation potential of components and formulations was assessed using a modified hen's egg chorioallantoic membrane test (HET-CAM) and the preocular retention of selected formulations was investigated in rabbit eye using gamma scintigraphy. Results showed that Crill 1, Crillet 4 and Crodamol EO were non-irritant. However, all other cosurfactants investigated were irritant and their irritation was dependent on their carbon chain length. A w/o ME formulated without cosurfactant showed a protective effect when a strong irritant (0.1 M NaOH) was used as the aqueous phase. Precorneal clearance studies revealed that the retention of colloidal and coarse dispersed systems was significantly greater than an aqueous solution with no significant difference between ME systems (containing 5% and 10% water) as well as o/w emulsion containing 85% water. Conversely, a LC system formulated without cosurfactant displayed a significantly greater retention compared to other formulations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.
Resumo:
Surfactants are versatile organic compounds that have, in a single molecule, double chemical affinity. The surfactant molecule is composed by a hy drophobic tail group, a hydrocarbon chain (linear, branched, or mixed), and by a hydrophilic head group, which contains polar groups that makes it able to be applied in the organophilization process of natural clays. Microemulsions are microheterogeneous b lends composed by: a surfactant, an oily phase (non - polar solvent), an aqueous phase, and, sometimes, a co - surfactant (short - chain alcohol). They are systems with thermodynamic stability, transparent, and have high solubility power. Vermiculite is a clay m ineral with an expandable crystalline structure that has high cation exchange capacity. In this work vermiculite was used to obtain organoclays. The ionic surfactants dodecyl ammonium chlori de (DDAC) and cetyltrimethylammonium bromide (C 16 TAB) were used in the organophilization process. They were used as surfactant aqueous solutions and, for DDAC, as a microemulsion system. The organoclays were used to promote the separation of binary mixtures of xylene isomers (ortho - and meta - xylene). Dif ferent analytical techniques were used to characterize microemulsion systems and also the nanoclays. It was produced a water - rich microemulsion system with 0.92 nm droplet average diameter. The vermiculite used in this work has a cationic exchange capacity of 172 meq/100g and magnesium as main cation (24.25%). The basal spacing of natural vermiculite and organo - vermiculites were obtained by X - ray Diffraction technique. The basal spacing was 1.48nm for natural vermiculite, 4.01nm for CTAB - vermiculite (CTAB 4 ) , and 3.03nm for DDAC - vermiculite (DDAC M1A), that proves the intercalation process. Separation tests were carried out in glass columns using three binary mixtures of xylene (ortho - xylene and meta - xylene). The results showed that the organovermiculite pre sented an enhanced chemical affinity by the mixture of hydrocarbons, when compared with the natural vermiculite, and also its preference by ortho - xylene. A factorial experimental design 2 2 with triplicate at the central point was used to optimize the xylen e separation process. The experimental design revealed that the initial concentration of isomers in the mixture and the mass of organovermiculite were the significant factors for an improved separation of isomers. In the experiments carried out using a bin ary mixture of ortho - xylene and meta - xylene (2:1), after its percolating through the organovermiculite bed (DDAC M1), it was observed the preference of the organoclay by the ortho - xylene isomer, which was retained in greater quantity than the meta - xylene o ne. At the end of the treatment, it was obtained a final concentration in meta - xylene of 47.52%.
Resumo:
Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter
Resumo:
The determination and monitoring of metallic contaminants in water is a task that must be continuous, leading to the importance of the development, modification and optimization of analytical methodologies capab le of determining the various metal contaminants in natural environments, because, in many cases, the ava ilable instrumentation does not provide enough sensibility for the determination of trace values . In this study, a method of extraction and pre- concentration using a microemulsion system with in the Winsor II equilibrium was tested and optimized for the determination of Co, Cd, P b, Tl, Cu and Ni through the technique of high- resolution atomic absorption spectrometry using a continuum source (HR-CS AAS). The optimization of the temperature program for the graphite furnace (HR-CS AAS GF) was performed through the pyrolysis and atomization curves for the analytes Cd, Pb, Co and Tl with and without the use of different chemical modifiers. Cu and Ni we re analyzed by flame atomization (HR-CS F AAS) after pre-concentr ation, having the sample introduction system optimized for the realization of discrete sampling. Salinity and pH levels were also analyzed as influencing factors in the efficiency of the extraction. As final numbers, 6 g L -1 of Na (as NaCl) and 1% of HNO 3 (v/v) were defined. For the determination of the optimum extraction point, a centroid-simplex statistical plan was a pplied, having chosen as the optimum points of extraction for all of the analytes, the follo wing proportions: 70% aqueous phase, 10% oil phase and 20% co-surfactant/surfactant (C/S = 4). After extraction, the metals were determined and the merit figures obtained for the proposed method were: LOD 0,09, 0,01, 0,06, 0,05, 0,6 and 1,5 μg L -1 for Pb, Cd, Tl, Co, Cu and Ni, re spectively. Line ar ranges of ,1- 2,0 μg L -1 for Pb, 0,01-2,0 μg L -1 for Cd, 1,0 - 20 μg L -1 for Tl, 0,1-5,0 μg L -1 for Co, 2-200 μg L -1 and for Cu e Ni 5-200 μg L -1 were obtained. The enrichment factors obtained ranged between 6 and 19. Recovery testing with the certified sample show ed recovery values (n = 3, certified values) after extraction of 105 and 101, 100 and 104% for Pb, Cd, Cu and Ni respectively. Samples of sweet waters of lake Jiqui, saline water from Potengi river and water produced from the oil industry (PETROBRAS) were spiked and the recovery (n = 3) for the analytes were between 80 and 112% confirming th at the proposed method can be used in the extraction. The proposed method enabled the sepa ration of metals from complex matrices, and with good pre-concentration factor, consistent with the MPV (allowed limits) compared to CONAMA Resolution No. 357/2005 which regulat es the quality of fresh surface water, brackish and saline water in Brazil.
Resumo:
Currently the market requires increasingly pure oil derivatives and, with that, comes the need for new methods for obtaining those products that are more efficient and economically viable. Considering the removal of sulfur from diesel, most refineries uses catalytic hydrogenation process, the hydrodesulfurization. These processes needs high energy content and high cost of production and has low efficiency in removing sulfur at low concentrations (below 500 ppm). The adsorption presents itself as an efficient and economically viable alternative in relation to the techniques currently used. With that, the main purpose of this work is to develop and optimize the obtaining of new adsorbents based on diatomite, modified with two non ionic surfactants microemulsions, adding efficiency to the material, to its application on removal of sulfur present in commercial diesel. Analyses were undertaken of scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray fluorescence (XRF), thermogravimetry (TG) and N2 adsorption (BET) for characterization of new materials obtained. The variables used for diatomite modification were: microemulsion points for each surfactant (RNX 95 and UNTL 90), microemulsion aqueous phase through the use or non-use of salts (CaCl2 and BaCl2), the contact time during the modification and the contact form. The study of adsorption capacity of materials obtained was performed using a statistical modeling to evaluate the influence of salt concentration in the aqueous phase (20 ppm to 1500 ppm), finite bath temperature (25 to 60° C) and the concentration of sulphur in diesel. It was observed that the temperature and the concentration of sulphur (300 to 1100 ppm) were the most significant parameters, in which increasing their values increase the ability of modified clay to adsorb the sulphur in diesel fuel. Adsorption capacity increased from 0.43 to mg/g 1.34 mg/g with microemulsion point optimization and with the addition of salts.
Resumo:
The oil industry is one of the activities that generates more waste to the environment. The drill cuttings is a waste generated in large quantities in the drilling process and that may cause environmental damage such as soil contamination and consequently the contamination of groundwater if disposed of without prior treatment. Arises the need to develop scientific activities and research ways to adapt these wastes the current environmental standards. In the case of solid wastes, the NBR 10004: 2004 of the Brazilian Association of Technical Standards (ABNT) classifies them into class I waste (hazardous) and class II (not dangerous), which determines which wastes may or may not be discarded in the environment without causing environmental impact. This study presents a novel alternative for treating drill cuttings, where this waste was classified as class I (Abreu & Souza, 2005), mainly by removing the n-paraffin present in it, since this arises when using drilling fluids base oil. Using microemulsion systems promotes the removal of this contaminant drill cuttings samples from wells located in Alto do Rodrigues - RN. Initially, we determined the concentration of paraffin using infrared method in samples were extracted with ultrasound, we obtained a paraffin concentration in the range from 36.59 to 43.52 g of paraffin per kilogram of cuttings. Used two microemulsion systems containing two nonionic surfactants from different classes, one is an alcohol ethoxylated (UNTL-90) and the other an nonylphenol ethoxylated (RNX 110). The results indicated that the system UNTL-90 surfactant has better efficiency than the system with RNX 110. The study of the influence of contact time at the extraction showed that for times greater than 25 minutes has a tendency to increase the percentage extraction with increasing contact time. It was also observed that the extraction is fast because at 1 minute contact has 22.7% extraction. The reuse of the microemulsion system without removing the paraffin extracted in previous steps, showed reduction of 29.32 in percentage of extraction by comparing the first and third extraction, but by comparing the first and second extractions reduction is 8.5 in percentage extraction, so the systems reuse optimization can be an option for economically viable removing paraffin from cuttings. The extraction with shaking is more effective in the treatment of cuttings, reaching the extraction percentage of 87.04%, that is, obtaining a drill cuttings with 0.551% paraffin. Using the percentage of paraffin employed in non-aqueous drilling fluids and fluid maximum limit on cuttings for disposal established by the Environmental Protection Agency of the United States (US EPA), one arrives at the conclusion that the level of paraffin on gravel cannot exceed 3.93%. Conclude that the amount of paraffin in the treated cuttings with the microemulsion system with shaking is below the established by US EPA, showing that the system used was efficient in removing the paraffin from the drill cuttings.
Resumo:
Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.
Resumo:
Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.
Resumo:
Acknowledgements The authors would like to gratefully acknowledge and appreciate the School of Engineering, University of Aberdeen, Aberdeen, Scotland, UK, for the provision of the laboratory facilities necessary for completing this work.
Resumo:
Acknowledgements The authors would like to gratefully acknowledge and appreciate the School of Engineering, University of Aberdeen, Aberdeen, Scotland, UK, for the provision of the laboratory facilities necessary for completing this work.
Resumo:
Cyclophosphamide (CYP) is an antineoplastic agent used for the treatment of many neoplastic and inflammatory diseases. Hemorrhagic cystitis is a frequent side effect of CYP. Several studies show that simvastatin has important pleiotropic (anti-inflammatory and immunomodulatory) effects. The purpose of the study was to investigate the effect of simvastatin on bladder, ureter and kidney injury caused by CYP. Methods: Adult male Wistar rats were randomly divided into three groups. The CYP/SIM group received simvastatin microemulsion by gavage during 7 days (10 mg/kg body wt) before the administration of CYP and the CYP/SAL group rats received saline 0.9%. The control rats were not treated. After that, all rats were treated with a single dose of CYP 200 mg/kg body wt intraperitoneally. The rats were killed 24 h after CYP administration. Plasma cytokines (TNF-a, IL-1b, IL-6) were measured by ELISA. Macro and light microscopic study was performed in the bladder, kidney and ureter. Results: In the bladders of CYP/SIMV treated rats edema of lamina propria with epithelial and sub-epithelial hemorrhage were lower than in CYP/SAL treated rats. The scores for macroscopic and microscopic evaluation of bladder and ureter were significantly lower in CYP/SIMV rats than in CYP/SAL rats. The kidney was not affected. The expression of TNF-a, IL-1b and IL-6 was significatly lower in CF/SINV rats (164.8±22, 44.8±8 and 52.4±13) than in CF/SAL rats (378.5±66, 122.9±26 e 123.6±18), respectively. Conclusion: The results of the current study suggest that simvastatin pretreatment attenuated CYP-induced urotelium inflammation and decreased the activities of cytokines