950 resultados para M2-m3 Loop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a hydrodynamic approach is used to analyse carefully the flow field inChandler loop--the artificial thrombus formation. The results obtained show that near thelower meniscus where the thrombus is formed, there is a back flow accompanied with asecondary flow and its mainflow is toward the meniscus, thus providing a favourable condi-tion for corpuscle aggregation. Our finding is valuable for studying the mechanism ofthrombus formation in artificial organ and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Seasonal changes in the climatology, oceanography and fisheries of the Panama Bight are determined mainly by the latitudinal movements of the ITCZ over the region. Evaporation is about 980 mm annually. Rainfall is probably much less than previous estimates because of a discontinuity in the ITCZ. Freshwater runoff from the northern watershed varies from 22 X 109 m3/mo in October-November to 11 X 109 m3/mo in February-March; from the southeastern watershed it varies from 16 X 109 m3/mo in April-June to 9 X 109 m3/mo in October-December. Total annual runoff is about 350 X 109m3. A marked salinity front is found at all seasons off the eastern shore. In the northern part of the Bight temperatures in the upper layers remained fairly constant from May to November; by February the mean temperature had decreased by 4°C and sharp gradients existed in the geographic distributions. Salinities in the upper layers decreased steadily from May to November; by February the mean salinity had increased by 2.5‰. The mean depth of the mixed layer increased from 27 m in May to 40 m in November; by February upwelling decreased it to 18 m. Between November and February upwelling had doubled the amount of P04-P and tripled that of NO3-N in the euphotic zone; surface phytoplankton production and standing crop, and zooplankton concentrations also doubled during this period. Upwelling was about 1.5 m/mo during May-November and about 9.0 m/mo during November-February, the annual total is about 48 m, Mean primary production is about 0.3 gC/m2day during May-December and about 0.6 gC/m2day during January-April; annual production is about 140 gC/m2. A thermal ridge occurred in February running from the northern to the southwestern part of the Bight. Within this ridge was a marked thermal dome coinciding with the center of the cyclonic circulation cell. Upwelling in the dome averaged 16 m/mo in November-February. The fisheries of the Panama Bight annually produce about 30,000 metric tons of food species and about 68,000 m.t. of species used for reduction. Most attempts to further the understanding of tuna ecology were unsuccessful. The apparent abundances of yellowfin and skipjack in the northern part of the Bight appear to be related to the seasonal cycle of upwelling and enrichment, as abundances are greatest in April and May when food appears to be plentiful. The life-cycle of the anchoveta in the Gulf of Panama also appears to be related to upwelling; the species mass varies from about 39,000 m.t. in December to about 169,000 m.t, in April. About 19.1 X 1012 anchoveta eggs are spawned annually. The life-cycles of shrimp in the Panama Bight appear to be related to upwelling as catches are greatest in May-July, about 3-5 months after peak upwelling, and annual catches are inversely correlated with sea level. SPANISH: Los cambios estacionales en la climatología, oceanografía y pesquerías del Panamá Bight están determinados principalmente por el movimiento latitudinal sobre la región de la Zona de Convergencia Intertropical (ZCIT). La evaporación es de unos 980 mm al año. La pluviosidad es probablemente muy inferior a las estimaciones previas a causa de la descontinuidad en la ZCIT. El drenaje de agua dulce, de la vertiente septentrional, varía de 22 x 109m3/mes en octubre-noviembre hasta 11 x 109m3/mes en febreromarzo; el de la vertiente sudeste varía de 16 x 109m3/mes en abril-junio a 9 x 109m3/mes en octubre-diciembre. El drenaje total, anual, es alrededor de 350 x 109m3. En todas las estaciones frente al litoral oriental se encuentra un frente de salinidad marcada. En la parte septentrional del Bight las temperaturas en las capas superiores permanecieron más bien constantes de mayo a noviembre; en febrero la temperatura media había disminuido en unos 4°C y existieron gradientes agudos en las distribuciones geográficas. Las salinidades en las capas superiores disminuyeron constantemente de mayo a noviembre; en febrero la salinidad media había aumentado en 2.5‰. La profundidad media de la capa mixta aumentó de 27 m en mayo a 40 m en noviembre; en febrero el afloramiento disminuyó el espesor de la capa mixta hasta 18 m. Entre noviembre y febrero el afloramiento había duplicado la cantidad de PO4-P y triplicado la de NO3-N en la zona eufótica; la producción superficial de fitoplancton y la biomasa primaria y las concentraciones de zooplancton también se duplicaron durante este período. El afloramiento era cerca de 1.5 mimes durante mayo-noviembre y de unos 9.0 mimes durante noviembre-febrero, el total anual es de unos 48 m. La producción media primaria es aproximadamente de 0.3 gC/m2 al día durante mayo-diciembre y cerca de 0.6 gC/m2 al día durante enero-abril; la producción anual es de unos 140 gC/m2. En febrero apareció una convexidad termal que se extendió de la parte norte a la parte sudoeste del Bight. Dentro de esta convexidad se encontró un domo termal marcado el cual coincidió con el centro de la circulación ciclonal de la célula. El afloramiento en el domo tuvo un promedio de 16 mimes en noviembre-febrero. Las pesquerías del Panamá Bight producen anualmente de cerca 30,000 toneladas métricas de especies alimenticias y unas 68,000 t.m. de especies usadas para la reducción. La mayoría de los esfuerzos realizados con el fin de adquirir más conocimiento sobre la ecología del atún no tuvo éxito. La abundancia aparente del atún aleta amarilla y del barrilete en la parte septentrional del Bight parece estar relacionada con el ciclo estacional del afloramiento y del enriquecimiento, ya que la abundancia mayor en abril y mayo cuando parece que hay abundancia es de alimento. El ciclo de vida de la anchoveta en el Golfo de Panamá parece también que está relacionada al afloramiento. La masa de la especie varía de unas 39,000 t.m. en diciembre a cerca de 169,000 t.m. en abril. Aproximadamente 19.1 x 1012 huevos de anchoveta son desovados anualmente. Los ciclos de vida del camarón en el Panamá Bight parecen estar relacionados con el afloramiento ya que las capturas son superiores en mayo-julio, unos 3-5 meses después del ápice del afloramiento, y las capturas anuales se correlacionan inversamente con el nivel del mar. (PDF contains 340 pages.)