277 resultados para Lygus-lineolaris Heteroptera


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect biodiversity is unevenly distributed on local, regional, and global scales. Elevation is a key factor in the uneven distribution of insect diversity, serving as a proxy for a host of environmental variables. My study examines the relationship of Heteroptera (true bugs) species diversity, abundance, and morphology to elevational gradients and land-use regimes on Mt. Kilimanjaro, Tanzania, East Africa. Heteroptera specimens were collected from 60 research sites covering an elevational range of 3684m (866-4550m above sea level). Thirty of the sites were classified as natural, while the remaining 30 were classified as disturbed (e.g., agricultural use or converted to grasslands). I measured aspects of the body size of adult specimens and recorded their location of origin. I used regression models to analyze the relationships of Heteroptera species richness, abundance, and body measurements to elevation and land-use regime. Richness and abundance declined with greater elevation, controlling for land use. The declines were linear or logarithmic in form, depending on the model. Richness and abundance were greater in natural than disturbed sites, controlling for elevation. According to an interaction, richness decreased more in natural than disturbed sites with rising elevation. Body length increased as a quadratic function of elevation, adjusting for land use. Body width X length decreased as a logarithmic function of elevation, while leg length/body length decreased as a quadratic function. Leg length/body length was greater in disturbed than natural sites. Interactions indicated that body length and body width X length were greater in natural than disturbed sites as elevation rose, although the general trend was downward. Future research should examine the relative importance of land area, temperature, and resource constraints for Heteroptera diversity and morphology on Mt. Kilimanjaro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae ) is an insect from Australia which is causing severe damage to eucalyptus crops around the world. When feeding from the leaves sap, it causes bronzening, and in extreme cases, may lead to the tree death. Control methods have been studied and the most promising so far is the egg parasitoid Cleruchoides noackae (Hymenoptera: Mymaridae). Alternative products from plants with insecticidal properties could also be a viable option, and they might even be used concomitantly with C. noackae, aiming for a most effective control, but still safe for the environment. Thus, the objective of this work was to verify the action of 5% aqueous plant extracts of Matricaria chamomilla, Echinodorus grandiflorus, Punica granatum, Maytenus ilicifolia a n d Origanum majorana on T. peregrinus. In addition, we aimed to study the extracts potential toxicity to C. noackae and Gallus domesticus L., since the plant compounds might have negative effect upon the non-target organisms. At first, HPLC (High Performance Liquid Chromatography) was used to verify which phenolic compounds would be found in the plant extracts. These were tested on bronze bug adults, in confinement test (to verify the insecticidal action of the extracts) and free-choice test (to verify the repellency). The extracts that showed better results were selected for further tests with non-target organisms. Regarding C. noackae, pre-parasitism and post-parasitism, confinement and free-choice tests were performed to verify if the extracts would affect the host-choosing by the female or the development of the immature stages of the parasitoid. To verify if the extracts would be toxic to G. domesticus, the plant extracts were added to young birds feed for five days. Parameters such as weight gain, food intake, quantification of serum enzymes and histopathological analysis were carried out. HPLC analysis detected gallic, ferulic, vanillic, caffeic and cumaric acid in the extracts samples. All plant extracts tested reduced T. peregrinus survival, but E. grandiflorus, Matricaria chamomilla Maytenus ilicifolia had also a repellent effect, and were tested on the non-target organisms. None of these extracts affected neither the host choice by C. noackae nor adult emergency, when compared to the control group. In addition, the extracts did not cause alterations in any of the studied parameters. Thus, we verified that E. grandiflorus, Matricaria chamomilla and Maytenus ilicifolia have potential to be used to control T. peregrinus and are safe to C. noackae and G. domesticus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe paternal care in two pentatomid bugs, Lopadusa (Lopadusa) augur Stål, 1860 and Edessa nigropunctata Berg, 1884. Field and laboratory observations showed that males remain with their eggs and early hatched nymphs, while females abandon the eggs after oviposition. Guarding males defensive behaviors towards their clutches were similar to those described for guarding females of pentatomids. Since there is no detailed information on the internal phylogeny of Pentatomidae, it is not possible to make a robust inference on whether paternal care in L. augur and E. nigropunctata has arisen independently or not. If the latter, the two new cases of paternal care we describe here represent the fifth event of independent evolution of this rare behavioral trait in Heteroptera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional wing polymorphism is commonly observed it) insects, and it may confer an important adaptive value to populations that bear this trait, because it allows dispersal and the location to more favorable habitats for their survival and reproduction. According to the oogenesis-flight syndrome theory, such wing polymorphism may imply differences in the locomotion Capacity of individuals, which is a factor induced by adverse environmental conditions during muscle development in immatures. Scaptocoris carvalhoi Becker (Hemiptera: Cydnidae) is an important agriculture pest in Brazil, and it has burrowing habits. The adults swarm in the beginning of the rainy season after a prolonged drought period in the Brazilian cerrado region. In these swarms, part of the population leaves the soil, performing long flights until locations with more abundant vegetation. In this study, we characterized wing polymorphism in S. carvalhoi, this being the first description in a species of Cydnidae. Brachypterous and macropterous males and females were observed, which showed positive and significant correlations between body length and hindwing length. Macropterous individuals demonstrated greater locomotion capacity than brachypterous individuals. In addition, only long-winged adults could fly, showing wing mobility and flight reaction. The increased number of macropterous individuals inside the soil during the swarming season and in the beginning of the rainy period suggests that wing polymorphism in this population occurs in seasonal cycles and that factors related to the scarcity of rains influence the development of immatures and the formation of polymorphic adults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste estudo, desenvolvido na entressafra do arroz (Julho-Outubro) de 1995, no Projeto Rio Formoso, município de Formoso do Araguaia - TO, com o objetivo de verificar o comportamento da população das pragas e seus inimigos naturais em soja, foram realizados levantamentos semanais com o método do pano de batida, em três cultivares de soja de ciclo médio: EMGOPA 308, DOKO RC e EMBRAPA 31 (BR 81). Entre os percevejos fitófagos somente foi constatada a ocorrência de Piezodorus guildinii, com picos populacionais no período de enchimento de grãos, porém não atingindo o nível de controle. As lagartas desfolhadoras encontradas foram Anticarsia gemmatalis, Hedylepta indicata e Chrysodeixis íncludens, em ordem decrescente de abundância. Dos coleópteros desfolhadores, a espécie encontrada em maior abundância foi Cerotoma sp. com picos populacionais próximos ao período reprodutivo, diferindo significativamente entre as cultivares. Dentre os inimigos naturais, foi verificada a ocorrência, em maior abundância de Cycloneda sanguínea (Coleoptera, Coccinellidae), Geocoris sp. (Heteroptera, Lygaeidae) e Lebia sp. (Coleoptera, Carabidae).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O cultivo de camu-camu Myrciaria dubia (H.B.K.) Mc Vaugh tem apresentado inúmeros problemas fitossanitários, dentre os quais, Tuthillia cognata Hodkinson et al. (Hemiptera: Homoptera, Psyllidae), que constantemente é citada como praga secundária. Os objetivos deste estudo foram determinar o nível e a intensidade de infestação (%) por T. cognata e estudar aspectos do ciclo biológico e do comportamento de T. cognata, em plantios experimentais de camu-camu. Foram selecionados, de forma aleatória, 17 e 14 exemplares nos plantios I e II, respectivamente. Para cada uma das variáveis estudadas, foram calculados a média aritmética, o desviopadrão, a variância e a amplitude de variação. Foi verificado um nível de infestação de 82% (plantio I) e 57% (plantio II), uma intensidade de infestação de 94% (plantio I) e 75% (plantio II) e uma média de seis ninfas/folha em cada plantio, o que indica que T. cognata representa uma das pragas-chave dessa cultura. Foram observados adultos de Chrysoperla sp. (Neuroptera: Chrysopidae) e ninfas de Reduviidae (Hemiptera: Heteroptera), que podem atuar como prováveis agentes de controle biológico de T. cognata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

v.1 Insecta. Rhynchota. Hemiptera-Heteroptera. Pentatomidæ. Coreidæ. Lygæidæ. Pyrrhocoridæ. Capsid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

v.2 Insecta. Rhynchota. Hemiptera-Heteroptera. Tingitidæ. Phymatidæ. Aradidæ. Hebridæ. Hydrometrid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Material: Studies were made mainly with Ascaris megalocephála Cloq. univalens and bivalens, and also with Tityus bahiensis Perty. 1) Somatic pairing of heterochromatic regions. The heterochromatic ends of the somatic chromosomes in Ascaris show a very strong tendency for unspecifical somatic pairing which may occur between parts of different chromosomes (Figs. 1, 2, 3, 7, 10, 11, 12, 13, 14, 16, 18,), between the two ends of the same chromosome either directly (Figs. 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 18) or inversely (Fig. 8, in the arrow) and also within a same chromosomal arm (Fig. 6). 2) During the early first cleavage division the chomosomes are an isodiametric cylinder (Figs. 6, 9, 11, 13, 14). But in later metaphase the ends become club shaped (Figs. 1, 2, 3, 4, 5, 7, 10) which is interpreted as the beginning of migration of chromatic substance from the central euchromatic region towards the heterochromatic regions. This migration becomes more and accentuated in anaphase (Figs. 19, 22, 23) and in the vegetative cells where euchromatic region looses more and more staing power, especially in the intersititial zones between the individual small spherical chromosomes into which the euchromatic region desintegrates. The emigrated chromatin material is finally eliminated with the heterochromatic chromosome ends (Fig. 23 and 24). 3) It seems a general rule that during mitotic anaphase all chromosomes with diffuse or multiple spindle fiber attachement (Ascaris, Tityus, Luzula, Steatococcus, Homoptera and Heteroptera in general) move to the poles in the form of an U with precedence of the chromosomal ends. In Ascaris, the heterocromatic regions are pulled passively towards the poles and only the euchromatic central portion may be U-shaped (Fig. 19, 22, 25). While in the other species this U-shape is perfect since the beginning of anaphase, giving the impression that movement towards the poles begins at both ends of a chromosome simultaneously, this is not the case in Ascaris. There the euchromatic region is at first U-shaped, passing then to form a straight or zig-zag line and becoming again U-shaped during late anaphase. This is explained by the fact that the ends of the euchromatic regions have to pull the weight of the passive heterochromatic portions. 4) While it is generally accepted that, during first meio-tic division untill second anaphase, all attachement regions remain either undivided or at least united closely, this is not the case in chromosomes with diffused or multiple attachment. Here one clearly sees in all cases so far studied four parallel chromatids at first metaphase. In Luzula and Tityus (for Tityus all figs. 26 to 31) this division is allready quite clear in paraphase (pro-metaphase) and it cannot be said wether in other species the division in sister chromatids is allready present, but not visible at this stage. During first anaphase the sister chromatids of Titbits remain more or less in contact, while in Luzula and especially in Ascaris they are quite separated. Thus one can count in late anaphase or telophase of Ascaris megalocephala bivalens, nearly allways, four separate chromosomes near each pole, or a total of eight chromatids per division figure (Figs. 35, 36, 37, 38, 39, 40, 41).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uma nova espécie de Euschistus Dallas, 1851, E. (M.) irroratus sp. nov. do Rio Grande do Sul, Brasil e Misiones, Argentina, é descrita e ilustrada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of colchicine upon the spermatogenesis of Triatoma infestans, (Hemipt. Heteroptera), has been studied and the different categories of giant spermatids that appear during the treatment have been compared with the nuclear volumes of the whole series of normal spermatogenetic stages. The following facts have been ascertained: 1) 4 hours after the treatment the gonial mitotic metaphases, and the 1st. and 2nd. metaphases of meiosis are stopped. The prophasic stages of meiosis and diakynesis appear to be normal. After 9 days of treatment, all the tetrads are broken in the meiotic metaphases and the cells appear with 44 and 22 chromosomes respectively, scattered in the cytoplasm. 2) At 9 days, practically all spermatogenetic stages have disappeared except for a few cysts of spermatogonia, and practically the whole testicle is full of cysts of spermatozoa and spermatid, with some large zones of necrosis with pycnotic nuclei. The spermatids appear to be of different sizes and the statistical analysis of the nuclear volumes gives a polymodal hystogram with 4 modes, whose volumes are in the ratio of 1:2:4:8. Ripe spermatozoa seem to have a certain volume variability, that has not been possible to analyse quantitatively. All these facts confirm what DOOLEY found in the colchicinized Orthoptera testicle. 3) The caryometric analysis conducted statistically on the normal stages of the spermatogenesis (resting spermatogonia, gonial prophases, leptotene, "confused stage", diakynesis, and spermatid) revealed the following facts: a) Considering the volume of the resting, spermatogonia as 1, their mitotic prophases have a volume of 2. Some rare prophases appear to have a volume of 4 and probably belong to tetraployd spermatogonia normally present in the testicle of Hemiptera. b) The first spermatocyte at the beginning of the auxocitary growth (leptotene) has a volume of 2, which is equal to that of them gonial prophase. It grows further during the "confused stage" and reduplicates, reaching thus the volume of 4. Diakynesis has a rather variable nuclear volume and it is higher than volume 4. This is probably of physico-chemical nature and not a growth increase. c) The spermatid at the beginning of the spermiogenetic process has a volume of 1 which is very constant and homogeneous. 4) These results can be summarized concluding that the meiotic process begins from a spermatogonium at the end of his mitotic interphasic growth (vol. 2) and instead of entering into the mitotic prophase transforms itself into the leptotene spermatocyte. During the diplotene ("confused stage") the volume of the nucleus doubles once more and reaches volume 4. In consequence of the two successive meiotic divisions the spermatid, although having an haploid number of chromosomes, has a nuclear volume of 1, just like the diploid spermatogonium. The interpretation of this strange result probably comes from the existence of the "tertiary split" in the chromosomes of the haploid set, that has been illustrated in the Hemiptera by HUGUES SCHRADER and in Orthoptera by MICKEY and co-workers. The tertiary split indicates that the chromosomes of the haploid set are constituted from almost two chromonemata, and this double constitution corresponds to the double cycle of reduplication that takes place during the spermatogenesis starting from the resting gonia. In Triatoma infestans the tertiary split appears in the chromosomes in the 1st. and 2nd. metaphases and in the diakynesis. In the blocked metaphases at the 9th. day of colchicinization some of the 44 elements scattered in the cytoplasm, show, when properly oriented, the split very clearly. Some new and strange facts revealed by SCHRADER and LEUCHTEMBERGER in Arvelius suggest the possibility of other interpretations of the rhythmic growth in special cases. There appears the necessity of more knowledge about the multiple or simple constitution of the chromosomes in somatic and spermatogonial mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

É analisado o mecanismo da picada dos Triatominae sob a consideração das observações até hoje conhecidas em Heteroptera e Homoptera. Leva à conclusão que os dados da literatura não chegam para esclarecer o mecanismo da picada dos Triatominae. Dos resultados das pesquisas e observações do animal vivo surge o seguinte quadro: Uma contração extremamente forte do músculo protrator pode mover as mandíbulas do adulto de Triatoma infestans para frente no máximo por 500 micra. Uma fonte de alimentação suficiente pode ser encontrada na epiderme do hospedeiro (homen) apenas numa profundidade de pelo menos 1000 a 1500 micra. O lábio nem pode ser encurtado nem dobrado. Correspondendo aos "fingerfoermigen Fortsaetzen" (WEBER) encontra-se na ponta do último segmento labial um mecanismo para a fixação das mandíbulas numa certa posição. Depois do esgotamento das possibilidades de contração dos protratores das mandíbulas as últimas são fixadas na posição atual. Em seguida segue uma dilatação dos protratores e depois do relaxamento do aparelho de fixação das mandíbulas os protratores são capazes de mover novamente as mandíbulas por quasi 500 micra para frente. Êsse processo pode ser repetido umas vêzes . Com o aparelho de fixação é ligado um mecanismo para a limpeza das mandíbulas na parte apical do último segmento labial em forma de uma escova. Na cabeça dos Triatominae é situado um órgão de contrôle muito complicado para estímulos mecânicos controlando a entrada das mandíbulas no tecido do hospedeiro. (O órgão receptivo correspondente para estímulos químicos é o órgão gustativo da epifaringe, já descrito umas vêzes.) O órgão representa um prolongamento do fim do tentório tubiforme dirigindo-se para frente. Perto da alavanca de articulação das mandíbulas o tubo, cheio de um líquido, aumenta-se formando uma vesícula que se insere na alavanca citada e na parede da cabeça diretamente ou por meio de tonofibrilas. Daqui o tubo continua pela antena inteira e insere-se, fechado no fim, por dois feixes de tonofibrilas fortes na extremidade do último segmento antenal. Imediatamente antes do órgão de Johnston insere-se no tubo do órgão de contrôle um scolopídio grande com a contrainserção na parede da antena (pedicelo). Cada tensão na vesícula na alavanca de articulação da mandíbula altera a pressão no líquido do órgão. A alteração da pressão é percebida pelo scolopídio. O scolopídio possui um aparelho terminal que representa uma invaginação da cutícula da parede antenal. Esta formação encontra-se também nos scolopídios do orgão de Johnston. O órgão pertence tanto às formas hematófagas dos gêneros Triatoma e Rhodnius como também à várias formas predatoras e fitófagas. Pode-se supor que o órgão é presente num grande número dos Heteroptera e que, eventualmente, representa uma parte do plano geral da ordem. O grau da evolução muito elevada deste órgão de controle indica que tem um papel importante para a manutenção da vida das espécies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.