943 resultados para Logan, James, d. 1780.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (d15N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 µg/g wet wt), while Tessisoak Lake (Labrador, 0.07 µg/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, d15N, and age, respectively, in 88,71, and 58% of 24 char populations. Length and d15N were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the isotopic composition of oxygen in marine diatoms in eight deep-sea cores recovered from the Atlantic sector of the Southern Ocean. The analytical reproducibility and core-to-core consistency of the isotopic signal suggests that diatom delta18O can be used as a new paleocenographic tool to reconstruct past variations in surface water characteristics and to generate 18O -isotope-based stratigraphy for the Southern Ocean. The data indicate that diatom delta18O reflects sea surface temperature and seawater isotopic composition and that diatoms retain their isotopic signal on timescales of a least 430 ka. The delta18O analyses of different diatom assemblages reveal that the isotopic signal is free of species effects and that the common Antarctic species have the same water-opal fractionation. The transition from the last glacial maximum (LGM) to the Holocene is fully recorded in high sedimentation rate cores. An 18O enrichment during the LGM, a post-LGM meltwater spike and an input of meltwater during the late Holocene are the main isotopic features observed in down core records. The origin of this meltwater was very likely melting icebergs and/or continental ice or by melting sea ice that had accumulated snow. The most pronounced meltwater effects are recorded in cores that are associated with the Weddel gyre. Our results provide the basis for extending isotope studies to oceanic regions devoid of carbonate; further, isotopic stratigraphies may be constructed for records and regions where they were previously not possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two modal size groups of sexually mature Arctic charr (Salvelinus alpinus) differing in shape and found at different depths in Lake Aigneau in the Canadian sub-Arctic are described and tested for genetic and ecological differentiation. Forms consisted of a small littoral resident, mean size 21.7 cm, and a large profundal resident, mean size 53.9 cm. Mitochondrial DNA analysis indicated that seven of eight haplotypes were diagnostic for either the littoral or profundal fish, with 66.6% of the variation being found within form groupings. Pairwise tests of microsatellite data indicated significant differences in nine of 12 loci and a significant difference between the forms across all tested loci. Molecular variation was partitioned to 84.1% within and 15.9% between forms and suggestive of either restricted interbreeding over time or different allopatric origins. Stable isotope signatures were also significantly different, with the profundal fish having higher d13C and d15N values than the littoral fish. Overlap and separation, respectively, in the range of form d13C and d15N signatures indicated that carbon was obtained from similar sources, but that forms fed at different trophic levels. Littoral fish relied on aquatic insects, predominantly chironomids. Profundal fish were largely piscivorous, including cannibalism. Predominantly empty stomachs and low per cent nitrogen muscle-tissue composition among profundal fish further indicated that the feeding activity was limited to the winter when ice-cover increases the density of available prey at depth. Results provide evidence of significant differences between the modal groups, with origins in both genetics and ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification in various proxy records of periods of rapid (decadal scale) climate change over recent millennia, together with the possibility that feedback mechanisms may amplify climate system responses to increasing atmospheric CO2, highlights the importance of a detailed understanding, at high spatial and temporal resolutions, of forcings and feedbacks within the system. Such an understanding has hitherto been limited because the temperate marine environment has lacked an absolute timescale of the kind provided by tree-rings for the terrestrial environment and by corals for the tropical marine environment. Here we present the first annually resolved, multi-centennial (489-year), absolutely dated, shell-based marine master chronology. The chronology has been constructed by detrending and averaging annual growth increment widths in the shells of multiple specimens of the very long-lived bivalve mollusc Arctica islandica, collected from sites to the south and west of the Isle of Man in the Irish Sea. The strength of the common environmental signal expressed in the chronology is fully comparable with equivalent statistics for tree-ring chronologies. Analysis of the 14C signal in the shells shows no trend in the marine radiocarbon reservoir correction (DR), although it may be more variable before ~1750. The d13C signal shows a very significant (R**2 = 0.456, p < 0.0001) trend due to the 13C Suess effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed biostratigraphy in Site 1006 based on planktonic foraminifers and nannofossils shows large-scale sedimentation rate variability in the Florida Strait west of the Great Bahama Bank. A 'floating' cyclostratigraphy based mainly on resistivity logs and magnetic susceptibility data has been fixed to the biostratigraphy in the absence of magnetostratigraphy. The strongest orbital cycle present is the precessional beat, which is present in the borehole logs throughout the record. Counting the cycles resulted in an accurate time scale and thus a sedimentation rate time series. Spectral analysis of the sedimentation rate time series shows that the short-term cycle of eccentricity (~125 k.y.) and the long term cycle of eccentricity (~400 k.y.) are pervasive throughout the Miocene record, together with the long-term ~2-m.y. eccentricity cycle. The Great Bahama Bank produced pulses of shallow carbonate input once every precessional (sea level) cycle during the Miocene and perhaps two pulses per cycle in the early Pliocene. The amount of sediment exported in these pulses appears to be controlled by eccentricity modulation of the precessional amplitude and therefore the amplitude of the sea-level rise. Finally, an increase in sedimentation rate just after the Miocene/Pliocene boundary is attributed to a change in the location and strength of sediment drift currents in the Florida Strait due to reorganization of the currents following the closure of the Panama Isthmus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31°42.194'S, 143°30.331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ~20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We correlated Miocene d18O increases at Ocean Drilling Program Site 747 with d18O increases previously identified at North Atlantic Deep Sea Drilling Project Sites 563 and 608. The d18O increases have been directly tied to the Geomagnetic Polarity Time Scale (GPTS) at Site 563 and 608, and thus our correlations at Site 747 provide a second-order correlation to the GPTS. Comparison of the oxygen isotope record at Site 747 with records at Sites 563 and 608 indicates that three as-yet-undescribed global Miocene d18O increases may be recognized and used to define stable isotope zones. The d18O maxima associated with the bases of Zones Mila, Milb, and Mi7 have magnetochronologic age estimates of 21.8, 18.3, and 8.5 Ma, respectively. The correlation of a d18O maximum at 70 mbsf at Site 747 to the base of Miocene isotope Zone Mi3 (13.6 Ma) provides a revised interpretation of four middle Miocene normal polarity intervals observed between 77 and 63 mbsf at Hole 747A. Oxygen isotope stratigraphy indicates that the reversed polarity interval at 70 mbsf, initially interpreted as Chronozone C5AAr, should be C5ABr. Instead of a concatenated Chronozone C5AD-C5AC with distinct Chronozones C5AB, C5AA, and C5A (as in the preliminary interpretation), d18O stratigraphy suggests that these normal polarity intervals are Chronozones C5AD, C5AC, and C5AB, whereas Chronozones C5AA-C5A are concatenated. This interpretation is supported by the d13C correlations. The upper Miocene magnetostratigraphic record at Hole 747A is ambiguous. Two upper Miocene d18O events at Site 747 can be correlated to the oxygen isotope records at Site 563 and 608 using the magnetostratigraphy derived at Hole 747B. Our chronostratigraphic revisions highlight the importance of stable isotope stratigraphy in attaining an integrated stratigraphic framework for the Miocene.