896 resultados para Lipid autoxidation
Resumo:
Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARβ/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARβ/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARβ/δ activation by GW501516 enhanced the physical interaction between PPARβ/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARβ/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARβ/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Resumo:
Drusen, the white yellowish deposits that can be seen in funduscopy, are a hallmark of age-related macular degeneration. Histologically, drusen are believed to be dome-shaped or more confluent lipid accumulations between the retinal pigment epithelium and the choriocapillaries. Recent advances in mouse funduscopy have revealed the presence of drusen-like structures in chemokine knockout animals in the absence of sizeable dome-shaped material below the retinal pigment epithelium. We show that aged CX3CR1-/- mice present with drusen-like appearance in funduscopy that is associated with a progressive age-related microglial cell accumulation in the subretinal space. We demonstrate that the anatomical equivalent of the drusen-like appearance in these mice are lipid-bloated subretinal microglial cells rather than subretinal pigment epithelium deposits [Combadière C, et al: J Clin Invest 2007;117:2920-2928].
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors that belong to the steroid/thyroid/retinoic acid receptor superfamily. All their characterized target genes encode proteins that participate in lipid homeostasis. The recent finding that antidiabetic thiazolidinediones and adipogenic prostanoids are ligands of one of the PPARs reveals a novel signaling pathway that directly links these compounds to processes involved in glucose homeostasis and lipid metabolism including adipocyte differentiation. A detailed understanding of this pathway could designate PPARs as targets for the development of novel efficient treatments for several metabolic disorders.
Resumo:
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Resumo:
BACKGROUND: 2013 AHA/ACC guidelines on the treatment of cholesterol advised to tailor high-intensity statin after ACS, while previous ATP-III recommended titration of statin to reach low-density lipoprotein cholesterol (LDL-C) targets. We simulated the impact of this change of paradigm on the achievement of recommended targets. METHODS: Among a prospective cohort study of consecutive patients hospitalized for ACS from 2009 to 2012 at four Swiss university hospitals, we analyzed 1602 patients who survived one year after recruitment. Targets based on the previous guidelines approach was defined as (1) achievement of LDL-C target < 1.8 mmol/l, (2) reduction of LDL-C ≥ 50% or (3) intensification of statin in patients who did not reach LDL-C targets. Targets based on the 2013 AHA/ACC guidelines approach was defined as the maximization of statin therapy at high-intensity in patients aged ≤75 years and moderate- or high-intensity statin in patients >75 years. RESULTS: 1578 (99%) patients were prescribed statin at discharge, with 1120 (70%) at high-intensity. 1507 patients (94%) reported taking statin at one year, with 909 (57%) at high-intensity. Among 482 patients discharged with sub-maximal statin, intensification of statin was only observed in 109 patients (23%). 773 (47%) patients reached the previous LDL-C targets, while 1014 (63%) reached the 2013 AHA/ACC guidelines targetsone year after ACS (p value < 0.001). CONCLUSION: The application of the new 2013 AHA/ACC guidelines criteria would substantially increase the proportion of patients achieving recommended lipid targets one year after ACS. Clinical trial number, NCT01075868.
Resumo:
BACKGROUND & AIMS: It has been reported that a high protein diet improves insulin sensitivity and reduces ectopic lipids in animals and humans with the metabolic syndrome. We therefore tested the hypothesis that a high dietary protein content may stimulate whole body lipid oxidation and alter post-prandial triglyceride (TG) after fructose ingestion. METHODS: The post-prandial metabolism of 8 young males was studied after two 6-day periods of hyper-energetic, high fructose diet (HiFruD), and after two 6-day periods of hyper-energetic high fructose high protein diet (HiFruHiProD). The order with which these periods were applied was randomized. At the end of each period, either a low protein, (13)C fructose test meal (Fru meal) or a high protein, (13)C fructose test meal (HiPro Fru meal) was administered. This resulted in the monitoring of metabolic parameters at 4 occasions in random order: a) with Fru meal ingested after HiFruD, b) with HiPro Fru meal ingested after HiFruD, c) with Fru meal ingested after HiFruHiProD or d) with HiPro Fru meal ingested after HiFruHiProD. On each occasion, post-prandial TG concentrations were monitored, energy expenditure and substrate metabolism were measured by indirect calorimetry, and fructose-induced gluconeogenesis was evaluated by measuring plasma (13)C-labeled glucose. RESULTS: TG responses to fructose ingestion were significantly higher after a hyper-energetic HiFruHiProD and after HiPro Fru meals than after a Fru meal ingested after a hyper-energetic HiFruD. Compared to low protein meals, high protein meals increased post-prandial energy expenditure, inhibited post-prandial lipid oxidation, and enhanced fructose-induced gluconeogenesis. These effects were similar with HiFruD and HiFruHiProD. CONCLUSIONS: Dietary proteins did not increase lipid oxidation and increased fructose-induced post-prandial TG in healthy humans fed an hyper-energetic, high fructose diet.
Resumo:
Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocopherols and pathway intermediates. Only vte2 displayed severe seedling growth defects, which corresponded with massively increased levels of the major classes of nonenzymatic lipid peroxidation products: hydroxy fatty acids, malondialdehyde, and phytoprostanes. In the absence of pathogens, the phytoalexin camalexin accumulated in vte2 seedlings to levels 100-fold higher than in wild-type or vte1 seedlings. Similarly, gene expression profiling in wild-type, vte1, and vte2 seedlings indicated that increased levels of nonenzymatic lipid peroxidation in vte2 corresponded to increased expression of many defense-related genes, which were not induced in vte1. Both biochemical and transcriptional analyses of vte2 seedlings indicate that nonenzymatic lipid peroxidation plays a significant role in modulating plant defense responses. Together, these results establish that tocopherols in wild-type plants or DMPBQ in vte1 plants limit nonenzymatic lipid peroxidation during germination and early seedling development, thereby preventing the inappropriate activation of transcriptional and biochemical defense responses.
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that are involved in many physiological processes, such as inflammation and energy homeostasis. In general, PPARs must be activated by ligands to stimulate the expression of their target genes. These agonists can be synthetic molecules, such as drugs used to treat hypertriglyceridemia and insulin resistance, or natural physiological ligands, such as fatty acids and eicosanoids. Although recent work has uncovered a surprisingly broad variety of natural molecules capable of activating PPARs, relatively little is known about their mode of action in an in vivo physiological context. The action of physiological ligands in situations of food deprivation and abundance, especially with respect to their intervention in the inflammatory response, and in both lipid homeostasis and inflammation resolution will be reviewed.
Resumo:
The V-ATPase V(0) sector associates with the peripheral V(1) sector to form a proton pump. V(0) alone has an additional function, facilitating membrane fusion in the endocytic and late exocytic pathways. V(0) contains a hexameric proteolipid cylinder, which might support fusion as proposed in proteinaceous pore models. To test this, we randomly mutagenized proteolipids. We recovered alleles that preserve proton translocation, normal SNARE activation and trans-SNARE pairing but that impair lipid and content mixing. Critical residues were found in all subunits of the proteolipid ring. They concentrate within the bilayer, close to the ring subunit interfaces. The fusion-impairing proteolipid substitutions stabilize the interaction of V(0) with V(1). Deletion of the vacuolar v-SNARE Nyv1 has the same effect, suggesting that both types of mutations similarly alter the conformation of V(0). Also covalent linkage of subunits in the proteolipid cylinder blocks vacuole fusion. We propose that a SNARE-dependent conformational change in V(0) proteolipids might stimulate fusion by creating a hydrophobic crevice that promotes lipid reorientation and formation of a lipidic fusion pore.
Resumo:
The aim of this work was to evaluate the effect of tannin sources and levels in rations, on the productive performance and body lipid deposition of Nile tilapias (Oreochromis niloticus) during the finishing phase. Three hundred and forty-two fishes were distributed in 18 tanks. Rations were prepared using corn, sorghum varieties, with low and high tannin content, and tannic acid at 0.08, 0.34, and 0.60%. Weight gain, apparent feed conversion and protein efficiency rate were not influenced by the treatments. The highest body lipid deposition was observed for the tannic acid treatment (14.39%), while the diet containing sorghum with high tannin content yielded leaner body (12.01%) than that of sorghum with low tannin content (13.31%). Diets containing sorghum provided lower levels of visceral fat. Rations with tannin contents did not harm the productive performance of Nile tilapia.