994 resultados para Linear codes
Resumo:
Cheating detection in linear secret sharing is considered. The model of cheating extends the Tompa-Woll attack and includes cheating during multiple (unsuccessful) recovery of the secret. It is shown that shares in most linear schemes can be split into subshares. Subshares can be used by participants to trade perfectness of the scheme with cheating prevention. Evaluation of cheating prevention is given in the context of different strategies applied by cheaters.
Resumo:
We present a distinguishing attack against SOBER-128 with linear masking. We found a linear approximation which has a bias of 2^− − 8.8 for the non-linear filter. The attack applies the observation made by Ekdahl and Johansson that there is a sequence of clocks for which the linear combination of some states vanishes. This linear dependency allows that the linear masking method can be applied. We also show that the bias of the distinguisher can be improved (or estimated more precisely) by considering quadratic terms of the approximation. The probability bias of the quadratic approximation used in the distinguisher is estimated to be equal to O(2^− − 51.8), so that we claim that SOBER-128 is distinguishable from truly random cipher by observing O(2^103.6) keystream words.
Resumo:
We observe that MDS codes have interesting properties that can be used to construct ideal threshold schemes. These schemes permit the combiner to detect cheating, identify cheaters and recover the correct secret. The construction is later generalised so the resulting secret sharing is resistant against the Tompa-Woll cheating.
Resumo:
This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.
Resumo:
The power of sharing computation in a cryptosystem is crucial in several real-life applications of cryptography. Cryptographic primitives and tasks to which threshold cryptosystems have been applied include variants of digital signature, identification, public-key encryption and block ciphers etc. It is desirable to extend the domain of cryptographic primitives which threshold cryptography can be applied to. This paper studies threshold message authentication codes (threshold MACs). Threshold cryptosystems usually use algebraically homomorphic properties of the underlying cryptographic primitives. A typical approach to construct a threshold cryptographic scheme is to combine a (linear) secret sharing scheme with an algebraically homomorphic cryptographic primitive. The lack of algebraic properties of MACs rules out such an approach to share MACs. In this paper, we propose a method of obtaining a threshold MAC using a combinatorial approach. Our method is generic in the sense that it is applicable to any secure conventional MAC by making use of certain combinatorial objects, such as cover-free families and their variants. We discuss the issues of anonymity in threshold cryptography, a subject that has not been addressed previously in the literature in the field, and we show that there are trade-offis between the anonymity and efficiency of threshold MACs.
Resumo:
This thesis is a study in narratology that examines the pre-theoretical ideas that underlie the study of narrative and time. The thesis explores how the lemniscate can be transported from geometry to narrative in order to structure a non-linear story that breaks the rules of causality and chronology by coupling physical movement through space with the backward pull of memory. The findings offer new possibilities for understanding the nexus between shape and story and for recording non-linear narratives that are marked by simultaneity, counterpoint, and reversal.
Resumo:
This paper presents a case study for the application of a Linear Engineering Asset Renewal decision support software tool (LinEAR) at a water distribution network in Australia. This case study examines how the LinEAR can assist water utilities to minimise their total pipeline management cost, to make a long-term budget based on mathematically predicted expenditure, and to present calculated evidence for supporting their expenditure requirements. The outcomes from the study on pipeline renewal decision support demonstrate that LinEAR can help water utilities to improve the decision process and save renewal costs over a long-term by providing an optimum renewal schedules. This software can help organisation to accumulate technical knowledge and prediction future impact of the decision using what-if analysis.
Resumo:
A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.
Resumo:
Many educators are currently interested in using computer-mediated communications (CMCs) to support learning and creative practice. In my work I have been looking at how we might create drama through using cyberspaces, working with teachers and students in secondary school contexts. In trying to understand issues that have arisen and ways of working with the data I have found a number of frameworks helpful for analysing the online interactions. These frameworks draw from O'Toole's work on contexts negotiated in the creation of drama and other frameworks drawn from Wertsch, Bakhtin and Vygotsky's work on speech utterances, dialogic processes and internalisation of learning. The contexts and factors which must be negotiated in online communications within learning contexts are quite complex and educators may need to provide parameters and protocols to ensure appropriate languages, genres and utterances are utilised. The paper explores some of the types of languages, genres and utterances that emerged from a co-curricula drama project and issues that arose, including the importance of establishing processes for giving and receiving critical feedback This paper is of relevance to those whose research strategies may involve the use of computer-mediated communications as well as those utilising cyberspaces in educational contexts.
Resumo:
In this paper, a method of thrust allocation based on a linearly constrained quadratic cost function capable of handling rotating azimuths is presented. The problem formulation accounts for magnitude and rate constraints on both thruster forces and azimuth angles. The advantage of this formulation is that the solution can be found with a finite number of iterations for each time step. Experiments with a model ship are used to validate the thrust allocation system.
Resumo:
Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.