871 resultados para Life-cycle assessment (LCA)
Resumo:
Ephemera danica Müller, 1764 (Ephemeroptera) is one of the largest mayflies found in the British Isles with some females reaching over 30 mm. It is a common and widespread species found in rivers, lakes and streams throughout Europe and is particularly abundant in many of the lowland rivers of the British Isles. The larvae are burrowers – mainly found where silt accumulates below macrophytes. This article gives a general overview of research work on the factors affecting the life cycle of Ephemera danica over a seven year period (1995–2002) on two rivers, the River Test at Leckford in Hampshire and the North Wey at Tilford in Surrey.
Resumo:
Pisidium obtusale in the neighbourhood of Borka occurs in deep pools on upland bogs. The majority of water-bodies where this mollusc lives are temporary. Their bottoms are covered with sedges, and sometimes mosses occur. Evidently there is a marked attraction of P. obtusale to places overgrown by willow. In pools remote from scrub or woody vegetation it does not appear. Temporary water-bodies fill up with melt water in the middle or the end of April and finally dry up at the end of July or the beginning of August. Observations on the life cycle of P. obtusale started on 21 April 1966, following on the filling-up of the water-body by melt water. The findings of the study are presented in this paper.
Resumo:
During hydrographic and plankton studies carried out since 1960 in the coastal zone between the Ebro and Castellon (western Mediterranean), data has been collected which confirms the importance of ciliates in the composition and activity of the plankton. The ciliates in 413 samples of 100 ml of water were counted, having been examined with the Utermohl microscope after sedimentation. The samples studied were distributed according to the density of their population. subject for study. The author concludes that recognition of the role of ciliates as an important link in the food chain of the sea would simplify the interpretation of certain problems posed by the nutrition of certain groups of planktonic animals.
Resumo:
The life cycle of the river lamprey, L. fluviatilis, is reviewed. The larval lamprey, or ammocoete, is a blind, filter-feeding animal, which normally lies concealed in the silt deposits of streams and rivers. After a period of 3-5 years in fresh water the ammocoete undergoes a metamorphosis in the summer months into a sexually immature, non-feeding stage known as the macrophthalia, which is active. This stage migrates downstream in late winter. It adopts a parasitic existence, in intertidal areas. After 18 months it returns to spawn in fresh water, after a final freshwater stage lasting up to 9 months. The river lamprey dies within a few days after the spawning period of 3-4 weeks, and none survive to spawn the following year.
Resumo:
The present work is focused on the measurement of workers exposure to nano-TiO2 in the life cycle steps of depollutant mortars. It has been done in the framework of the SCAFFOLD project, which aims at the management of potential risks arising from the use of manufactured nanomaterials in construction. Main findings can be summarized as follows: (1) The occupational exposure to nano-TiO2 is below 0.3 mg/m(3) for all measured scenarios. The highest concentrations were measured during the cleaning task (in the nano-TiO2 manufacturing process) and during the application (spraying) of depollutant coatings on a wall. (2) It was found a high release of particles above the background in several tasks as expected due to the nature of the activities performed. The maximum concentration was measured during drilling and during adding powder materials (mean total particle concentration up to 5.591E+04 particles/cm(3) and 5.69E+04 particles/cm(3)). However, considering data on total particle concentration released, no striking differences have been observed when tasks have been performed using conventional materials in the sector (control) and when using materials doped with nano-objects.
Resumo:
This contribution summarizes knowledge on the biology (population dynamics, reproduction, ecology) of 25 fish species from the Lower Amazon, Brazil, based on data from a Brazilian-German field project (IARA) and a review of the literature.
Resumo:
Many aerospace companies are currently making the transition to providing fully-integrated product-service offerings in which their products are designed from the outset with life-cycle considerations in mind. Based on a case study at Rolls-Royce, Civil Aerospace, this paper demonstrates how an interactive approach to process simulation can be used to support the redesign of existing design processes in order to incorporate life-cycle engineering (LCE) considerations. The case study provides insights into the problems of redesigning the conceptual stages of a complex, concurrent engineering design process and the practical value of process simulation as a tool to support the specification of process changes in the context of engineering design. The paper also illustrates how development of a simulation model can provide significant benefit to companies through the understanding of process behaviour that is gained through validating the behaviour of the model using different design and iteration scenarios. Keywords: jet engine design; life-cycle engineering; LCE; process change; design process simulation; applied signposting model; ASM. Copyright © 2011 Inderscience Enterprises Ltd.
Resumo:
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.