995 resultados para Library theory
Resumo:
Cognitive complexity and control theory and relational complexity theory attribute developmental changes in theory of mind (TOM) to complexity. In 3 studies, 3-, 4-, and 5-year-olds performed TOM tasks (false belief, appearance-reality), less complex connections (Level 1 perspective-taking) tasks, and transformations tasks (understanding the effects of location changes and colored filters) with content similar to TOM. There were also predictor tasks at binary-relational and ternary-relational complexity levels, with different content. Consistent with complexity theories: (a) connections and transformations were easier and mastered earlier than TOM; (b) predictor tasks accounted for more than 80% of age-related variance in TOM; and (c) ternary-relational items accounted for TOM variance, before and after controlling for age and binary-relational items. Prediction did not require hierarchically structured predictor tasks.
Resumo:
Suggests that one's sense of one's self and one's sexuality may also have a close relationship to non-fiction texts about gay and lesbian cultures. Reliance of people's sense of being gay on literary representations; Popularity and authority of the book "Queer Theory," by Annamarie Jagose; Disagreements that characterize lesbian and gay historiography in Australia.
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
This study identifies valid orthogonal scales of Gray's animal learning paradigms, upon which his Reinforcement Sensitivity Theory (RST) is based, by determining a revised structure to the Gray-Wilson Personality Questionnaire (GWPQ) (Wilson, Gray, & Barrett, 1990). It is also determined how well Gray's RST scales predict the surface scales of personality, which were measured in terms of Eysenck Personality Profiler (EPP) scales, the EPQ-R and the learning styles questionnaire (LSQ) scales. First, results suggest that independent pathways of RST scales may exist in humans. Second, Fight seems related to Anxiety and not the Fight/Flight system as proposed by RST. Third. a remarkably consistent story emerges in that Extraversion scales are predicted by Fight, Psychoticism scales are predicted by Active-avoidance, Fight and/or Flight, and Neuroticism scales tend not to be predicted at all (except for Anxiety). Fourth, Gray's revised scales are Unrelated to gender and age effects and show a predictable overlap with the LSQ and original GWPQ scales. It is concluded that Gray's model of personality might provide a stable biological basis of many surface scales of personality, but that there must also be other influences on personality. These results question the finer structure of Gray's RST whilst also showing that RST has greater range of applicability than a strict interpretation of theory implies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.
Resumo:
This paper presents a detailed analysis of adsorption of supercritical fluids on nonporous graphitized thermal carbon black. Two methods are employed in the analysis. One is the molecular layer structure theory (MLST), proposed recently by our group, and the other is the grand canonical Monte Carlo (GCMC) simulation. They were applied to describe the adsorption of argon, krypton, methane, ethylene, and sulfur hexafluoride on graphitized thermal carbon black. It was found that the MLST describes all the experimental data at various temperatures well. Results from GCMC simulations describe well the data at low pressure but show some deviations at higher pressures for all the adsorbates tested. The question of negative surface excess is also discussed in this paper.
Resumo:
Bourdieu … makes it possible to explain how the actions of principals are always contextual, since their interests vary with issue, location, time, school mix, composition of staff and so on. This 'identity' perspective points at a different kind of research about principal practice: to understand the game and its logic requires an analysis of the situated everyday rather than abstractions that claim truth in all instances and places. (Thomson 2001a: 14)
Resumo:
The aim of this article is to demonstrate that the apparent controversy between the infinitesimal deformation (ID) approach and the phenomenological theory of martensitic transformations (PTMTs) in predicting the crystallographic characteristics of a martensitic transformation is entirely based on unjustified approximations associated with the way in which the ID calculations are performed. When applied correctly, the ID approach is shown to be absolutely identical to the PTMT. Nevertheless, there may be some advantages in using the ID approach. In particular, it is somewhat simpler than the PTMT; it is based on a physical concept that is easier to understand and, most important, it may provide a tool for investigating some of the features of martensitic transformations that have eluded explanation via the PTMT.
Resumo:
Mineral processing plants use two main processes; these are comminution and separation. The objective of the comminution process is to break complex particles consisting of numerous minerals into smaller simpler particles where individual particles consist primarily of only one mineral. The process in which the mineral composition distribution in particles changes due to breakage is called 'liberation'. The purpose of separation is to separate particles consisting of valuable mineral from those containing nonvaluable mineral. The energy required to break particles to fine sizes is expensive, and therefore the mineral processing engineer must design the circuit so that the breakage of liberated particles is reduced in favour of breaking composite particles. In order to effectively optimize a circuit through simulation it is necessary to predict how the mineral composition distributions change due to comminution. Such a model is called a 'liberation model for comminution'. It was generally considered that such a model should incorporate information about the ore, such as the texture. However, the relationship between the feed and product particles can be estimated using a probability method, with the probability being defined as the probability that a feed particle of a particular composition and size will form a particular product particle of a particular size and composition. The model is based on maximizing the entropy of the probability subject to mass constraints and composition constraint. Not only does this methodology allow a liberation model to be developed for binary particles, but also for particles consisting of many minerals. Results from applying the model to real plant ore are presented. A laboratory ball mill was used to break particles. The results from this experiment were used to estimate the kernel which represents the relationship between parent and progeny particles. A second feed, consisting primarily of heavy particles subsampled from the main ore was then ground through the same mill. The results from the first experiment were used to predict the product of the second experiment. The agreement between the predicted results and the actual results are very good. It is therefore recommended that more extensive validation is needed to fully evaluate the substance of the method. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.